nets.py 26.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle
16
from . import layers
17
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
18
from ..utils import deprecated
19
import paddle
F
fengjiayi 已提交
20

21 22 23
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
24
    "glu",
25
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
26
    "img_conv_group",
27
]
D
dzhwinter 已提交
28

F
fengjiayi 已提交
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def simple_img_conv_pool(
    input,
    num_filters,
    filter_size,
    pool_size,
    pool_stride,
    pool_padding=0,
    pool_type='max',
    global_pooling=False,
    conv_stride=1,
    conv_padding=0,
    conv_dilation=1,
    conv_groups=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    use_cudnn=True,
):
48
    r"""
49
        :api_attr: Static Graph
S
swtkiwi 已提交
50

S
SunGaofeng 已提交
51
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
52 53

    Args:
S
SunGaofeng 已提交
54 55
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
56 57 58
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
59
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
60 61
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
62
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
63 64
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
65
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
66 67
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
68
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
69 70 71
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
72
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
73 74
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
75
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
76 77
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
78
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
79 80
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
81
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
82 83 84
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
99 100 101 102
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
103 104 105 106
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
107 108 109 110

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
111
            import paddle.fluid as fluid
C
cnn 已提交
112 113
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
114
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
115 116 117 118 119 120 121
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
        use_cudnn=use_cudnn,
    )

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        pool_padding=pool_padding,
        global_pooling=global_pooling,
        use_cudnn=use_cudnn,
    )
Q
Qiao Longfei 已提交
145 146 147
    return pool_out


148 149 150 151 152 153 154 155 156 157 158 159 160 161
def img_conv_group(
    input,
    conv_num_filter,
    pool_size,
    conv_padding=1,
    conv_filter_size=3,
    conv_act=None,
    param_attr=None,
    conv_with_batchnorm=False,
    conv_batchnorm_drop_rate=0.0,
    pool_stride=1,
    pool_type="max",
    use_cudnn=True,
):
Q
Qiao Longfei 已提交
162
    """
163
        :api_attr: Static Graph
S
swtkiwi 已提交
164

C
chengduoZH 已提交
165
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
166
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
167
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
168
    result to Pool2D.
C
chengduoZH 已提交
169 170

    Args:
L
lvmengsi 已提交
171
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
172
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
173
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
174 175
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
176
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
177
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
178
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
179 180
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
181 182
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
183
            Default: None.
C
cnn 已提交
184 185
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
186 187
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
188
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
189 190 191 192
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
193
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
194 195 196 197 198 199 200 201 202
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
203
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
204
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
205 206 207 208

    Examples:
        .. code-block:: python

209
            import paddle.fluid as fluid
C
cnn 已提交
210 211
            import paddle
            paddle.enable_static()
212

L
lvmengsi 已提交
213
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
214 215 216 217 218 219 220
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
221 222
    """
    tmp = input
223 224 225
    assert isinstance(conv_num_filter, list) or isinstance(
        conv_num_filter, tuple
    )
Q
Qiao Longfei 已提交
226 227 228 229 230

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
231
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
232 233 234 235
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
236
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
237 238 239
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

240
    for i in range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
241 242 243 244
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

245 246 247 248 249 250 251 252 253
        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            param_attr=param_attr[i],
            act=local_conv_act,
            use_cudnn=use_cudnn,
        )
Q
Qiao Longfei 已提交
254 255

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
256
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
257 258
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
259
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
260

261 262 263 264 265 266 267
    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        use_cudnn=use_cudnn,
    )
F
fengjiayi 已提交
268
    return pool_out
D
dzhwinter 已提交
269 270


271 272 273 274 275 276 277 278 279
def sequence_conv_pool(
    input,
    num_filters,
    filter_size,
    param_attr=None,
    act="sigmoid",
    pool_type="max",
    bias_attr=None,
):
C
chengduoZH 已提交
280
    """
281
        :api_attr: Static Graph
S
swtkiwi 已提交
282

283
    **This api takes input as an LoDTensor. If input is a Tensor, please use**
S
SunGaofeng 已提交
284 285
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

286
    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
S
SunGaofeng 已提交
287
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
288 289

    Args:
290 291
        input (Variable): 2-D LoDTensor, the input of sequence_conv,
            which supports variable-time length input sequence.
S
SunGaofeng 已提交
292
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
293
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
294
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
295 296
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
297
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
298
        act (str|None): Activation type for Sequence_conv Layer.
S
SunGaofeng 已提交
299
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
300 301 302
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
303 304 305 306 307
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
308

S
SunGaofeng 已提交
309
    Returns:
310
        The final result after sequence_conv and sequence_pool.
S
SunGaofeng 已提交
311 312 313 314
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
315 316 317 318

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
319
            import paddle.fluid as fluid
C
cnn 已提交
320 321
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
322
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
323 324
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
325
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
326 327 328 329 330 331 332
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
333 334

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
335 336 337 338 339 340 341 342
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
    )
D
dzhwinter 已提交
343

344
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
345
    return pool_out
G
guosheng 已提交
346 347


F
Feiyu Chan 已提交
348
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
349
def glu(input, dim=-1):
350
    r"""
351
        :api_attr: Static Graph
S
swtkiwi 已提交
352

353 354
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` ,
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` .
Y
Yibing Liu 已提交
355
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
356
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
357
    following:
G
guosheng 已提交
358 359 360 361 362

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
363
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
364
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
365

G
guosheng 已提交
366
    Args:
367 368
        input (Variable): The input variable which is a Tensor or LoDTensor.
                          The supported data types include float32, float64
Y
Yibing Liu 已提交
369 370
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
371
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
372 373

    Returns:
Y
Yibing Liu 已提交
374
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
375 376 377 378

    Examples:
        .. code-block:: python

379
            import paddle.fluid as fluid
C
cnn 已提交
380 381
            import paddle
            paddle.enable_static()
382

Y
Yibing Liu 已提交
383
            data = fluid.data(
Y
Yibing Liu 已提交
384 385 386
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
387
    """
388 389 390
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], "glu"
    )
G
guosheng 已提交
391
    a, b = layers.split(input, num_or_sections=2, dim=dim)
392
    act_b = paddle.nn.functional.sigmoid(x=b)
393
    out = paddle.multiply(x=a, y=act_b)
G
guosheng 已提交
394
    return out
395 396


397 398 399
def scaled_dot_product_attention(
    queries, keys, values, num_heads=1, dropout_rate=0.0
):
400
    r"""
C
cnn 已提交
401
	:api_attr: Static Graph
S
swtkiwi 已提交
402

G
Guo Sheng 已提交
403
    This interface Multi-Head Attention using scaled dot product.
404
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
405 406 407
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
408

G
Guo Sheng 已提交
409
    .. math::
410

G
Guo Sheng 已提交
411 412 413
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
414

G
Guo Sheng 已提交
415
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
416

G
Guo Sheng 已提交
417 418 419 420 421 422
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
423

Y
ying 已提交
424
    Args:
G
Guo Sheng 已提交
425 426 427 428 429 430 431 432 433 434 435 436
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
437
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
438 439 440
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
441 442

    Returns:
G
Guo Sheng 已提交
443 444 445 446 447
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
448

Y
ying 已提交
449
    Raises:
450
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
451
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
452
        ValueError: The hidden size of queries and keys should be the same.
453
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
454 455
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
456

457 458 459
    Examples:
        .. code-block:: python

460
            import paddle.fluid as fluid
C
cnn 已提交
461 462
            import paddle
            paddle.enable_static()
463

G
Guo Sheng 已提交
464 465 466
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
467
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
468
            contexts.shape  # [3, 5, 10]
469
    """
470 471 472 473 474 475 476 477 478 479 480 481
    check_variable_and_dtype(
        queries,
        'queries',
        ['float32', 'float64'],
        "scaled_dot_product_attention",
    )
    check_variable_and_dtype(
        keys, 'keys', ['float32', 'float64'], "scaled_dot_product_attention"
    )
    check_variable_and_dtype(
        values, 'values', ['float32', 'float64'], "scaled_dot_product_attention"
    )
482 483 484 485 486

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
487 488 489 490 491 492 493
            " keys.dtype = %s, values.dtype) = %s."
            % (
                convert_dtype(queries.dtype),
                convert_dtype(keys.dtype),
                convert_dtype(values.dtype),
            )
        )
494

Y
ying 已提交
495 496
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
497 498
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
499 500 501
            "len(keys.shape) = %d, len(values.shape) = %d."
            % (len(queries.shape), len(keys.shape), len(values.shape))
        )
Y
ying 已提交
502 503 504

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
505 506
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
507 508
            % (queries.shape[-1], keys.shape[-1])
        )
Y
ying 已提交
509 510
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
511 512
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
513 514
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2])
        )
Y
ying 已提交
515
    if keys.shape[-1] % num_heads != 0:
516 517 518 519 520
        raise ValueError(
            "The hidden size of keys (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (keys.shape[-1], num_heads)
        )
Y
ying 已提交
521
    if values.shape[-1] % num_heads != 0:
522 523 524 525 526
        raise ValueError(
            "The hidden size of values (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (values.shape[-1], num_heads)
        )
Y
ying 已提交
527

Y
ying 已提交
528
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
545 546 547 548 549 550 551 552
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
553 554
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
555
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
556 557 558
        dimensions.

        Args:
Y
ying 已提交
559 560
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
561 562

        Returns:
Y
ying 已提交
563 564
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
565
        """
Y
ying 已提交
566 567
        if num_heads == 1:
            return x
568

Y
ying 已提交
569
        hidden_size = x.shape[-1]
570 571 572
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
573
        reshaped = paddle.reshape(
574 575 576
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads],
        )
577

T
tianshuo78520a 已提交
578
        # permute the dimensions into:
579
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
580
        return paddle.transpose(x=reshaped, perm=[0, 2, 1, 3])
581 582

    def __combine_heads(x):
Y
ying 已提交
583
        """
T
tianshuo78520a 已提交
584
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
585 586 587 588 589 590 591 592 593 594 595
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

596 597
        if len(x.shape) == 3:
            return x
598 599 600
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

601
        trans_x = paddle.transpose(x, perm=[0, 2, 1, 3])
602
        return paddle.reshape(
603 604 605 606 607 608 609 610 611 612 613 614
            x=trans_x,
            shape=list(
                map(
                    int,
                    [
                        trans_x.shape[0],
                        trans_x.shape[1],
                        trans_x.shape[2] * trans_x.shape[3],
                    ],
                )
            ),
        )
615

Y
ying 已提交
616 617 618 619 620
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
621 622

    key_dim_per_head = keys.shape[-1] // num_heads
2
201716010711 已提交
623
    scaled_q = paddle.scale(x=q, scale=key_dim_per_head**-0.5)
624
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
625

626 627 628 629
    x = paddle.reshape(x=product, shape=[-1, product.shape[-1]])
    x = paddle.nn.functional.softmax(x)
    weights = paddle.reshape(x=x, shape=product.shape)

Y
ying 已提交
630
    if dropout_rate:
631 632 633
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False
        )
Y
ying 已提交
634 635
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)