test_slice_op.py 32.2 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
import paddle.fluid.core as core
18
from op_test import OpTest, convert_float_to_uint16
19
import paddle.fluid as fluid
20
import paddle.fluid.layers as layers
21
import paddle
22
from paddle.fluid.framework import _test_eager_guard, _enable_legacy_dygraph
23 24 25
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
W
whs 已提交
26

27 28
paddle.enable_static()

W
whs 已提交
29

30 31
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
32
class TestSliceOp(OpTest):
33

W
whs 已提交
34 35 36 37 38 39 40 41
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
42 43
            'ends': self.ends,
            'infer_flags': self.infer_flags
W
whs 已提交
44 45 46
        }

    def config(self):
47
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
48 49 50
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
51
        self.infer_flags = [1, 1, 1]
W
whs 已提交
52 53 54 55 56
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

57 58 59
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)

W
whs 已提交
60

61
class TestCase1(TestSliceOp):
62

63
    def config(self):
64
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
65 66 67 68 69 70 71 72
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
73

74
    def config(self):
75
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
76 77 78 79 80 81 82
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class TestSliceZerosShapeTensor(OpTest):

    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags,
            'use_mkldnn': True
        }

    def config(self):
        self.input = np.random.random([0, 0, 0]).astype("float32")
        self.starts = [1]
        self.ends = [2]
        self.axes = [0]
        self.infer_flags = []
        self.out = self.input[1:2]

    def test_check_output(self):
        self.check_output_with_place(paddle.CPUPlace())


110
# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
111
class TestSliceOp_decs_dim(OpTest):
112

H
Hongyu Liu 已提交
113 114 115 116 117 118 119 120 121
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
122
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
123 124 125 126
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
127
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
128 129 130 131
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
132
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
133 134 135 136 137 138 139 140 141
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


142
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
143

144
    def config(self):
145
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
146 147 148 149 150 151 152 153 154
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
155

156
    def config(self):
157
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
158 159 160 161 162 163 164 165 166
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
167

168
    def config(self):
169
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
170 171 172 173 174 175 176 177 178
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
179

180
    def config(self):
181
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
182 183 184 185 186 187 188 189 190
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
191

192
    def config(self):
193
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
194 195 196 197 198 199 200 201 202 203 204
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
205

H
Hongyu Liu 已提交
206 207 208
    def setUp(self):
        self.op_type = "slice"
        self.config()
209 210 211 212

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
213
                (1)).astype('int64') * ele))
214 215

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
216 217 218
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
219
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
220
            'ends': self.ends,
221
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
222 223 224
        }

    def config(self):
225
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
226
        self.starts = [1, 0, 2]
227
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
228
        self.axes = [0, 1, 2]
229 230 231 232
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
233 234 235 236 237 238 239 240

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


241 242 243
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
244

H
Hongyu Liu 已提交
245 246 247
    def setUp(self):
        self.op_type = "slice"
        self.config()
248 249 250 251 252 253 254 255

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
256 257 258
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
259
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
260
            'ends': self.ends,
261
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
262 263 264 265
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
266
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
267 268
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
269
        self.axes = [0, 1, 2]
270 271 272 273 274
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
275 276 277 278 279 280 281 282

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


283 284
class TestSliceOp_decs_dim_5_starts_ListTensor(
        TestSliceOp_decs_dim_starts_ListTensor):
285

286
    def config(self):
287
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
288 289 290 291 292 293 294 295 296 297 298 299 300
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
301

H
Hongyu Liu 已提交
302 303 304
    def setUp(self):
        self.op_type = "slice"
        self.config()
305 306
        self.inputs = {
            'Input': self.input,
307
            "StartsTensor": np.array(self.starts, dtype="int32")
308
        }
H
Hongyu Liu 已提交
309 310 311
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
312
            #'starts': self.starts,
H
Hongyu Liu 已提交
313
            'ends': self.ends,
314
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
315 316 317 318
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
319
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
320 321 322 323 324 325
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
326 327 328 329 330 331 332 333

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


334 335 336
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
337

H
Hongyu Liu 已提交
338 339 340
    def setUp(self):
        self.op_type = "slice"
        self.config()
341 342 343

        self.inputs = {
            'Input': self.input,
344 345
            "StartsTensor": np.array(self.starts, dtype="int64"),
            "EndsTensor": np.array(self.ends, dtype="int32")
346
        }
H
Hongyu Liu 已提交
347 348 349
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
350 351 352
            #'starts': self.starts,
            #'ends': self.ends_infer,
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
353 354 355
        }

    def config(self):
356
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
357 358 359 360 361
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
362 363 364 365 366 367 368 369

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


370 371 372
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
373

374 375 376 377 378
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {
            'Input': self.input,
379 380
            "StartsTensor": np.array(self.starts, dtype="int32"),
            "EndsTensor": np.array(self.ends, dtype="int32")
381 382 383 384 385 386 387 388 389 390
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
391
    def config(self):
392
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
393 394
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
395
        self.axes = [0, 1, 2]
396 397 398 399 400 401 402 403 404
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
405 406


407 408 409
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
410

411 412 413 414 415 416 417 418 419 420 421
    def setUp(self):
        self.op_type = "slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("y" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'Input': self.input,
422
            "StartsTensor": np.array(self.starts, dtype="int32"),
423 424 425 426 427 428 429 430 431 432
            'EndsTensorList': ends_tensor
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends_infer,
            'infer_flags': self.infer_flags
        }

W
whs 已提交
433
    def config(self):
434
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
435 436 437 438 439 440 441 442 443 444 445 446 447
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
448 449


450
# Test CUDA float16
451 452
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
453
class TestFP16(OpTest):
454

455 456 457 458 459 460 461 462 463 464 465 466
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

467 468 469 470 471 472 473
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
474
        self.infer_flags = [1, 1, 1]
475 476 477 478 479 480 481 482 483

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
484 485 486
            self.check_grad_with_place(place, ['Input'],
                                       'Out',
                                       max_relative_error=0.006)
487 488


489 490
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
491
class TestFP16_2(OpTest):
492

493 494 495 496 497 498 499 500 501 502 503 504
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

505 506
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
507
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
508 509 510 511
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
512
        self.infer_flags = [1]
513 514 515 516 517 518 519 520 521

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
522 523 524 525
            self.check_grad_with_place(place, ['Input'],
                                       'Out',
                                       max_relative_error=0.006,
                                       numeric_grad_delta=0.5)
526 527


528
class TestBF16(OpTest):
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out')


558
# Test python API
559
class TestSliceAPI(unittest.TestCase):
560

561
    def test_1(self):
562
        input = np.random.random([3, 4, 5, 6]).astype("float64")
563
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
564
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
565 566 567 568 569 570 571 572 573 574 575
        starts = fluid.layers.data(name='starts',
                                   shape=[1, 3],
                                   append_batch_size=False)
        ends = fluid.layers.data(name='ends',
                                 shape=[3],
                                 append_batch_size=False)

        x = fluid.layers.data(name="x",
                              shape=[3, 4, 5, 6],
                              append_batch_size=False,
                              dtype="float64")
576

577 578 579
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

580 581 582 583 584 585 586 587 588 589 590 591
        out_1 = paddle.slice(x,
                             axes=[0, 1, 2],
                             starts=[-3, 0, 2],
                             ends=[value_int64, 100, -1])
        out_2 = paddle.slice(x,
                             axes=[0, 1, 3],
                             starts=[minus_3, 0, 2],
                             ends=[3, 100, -1])
        out_3 = paddle.slice(x,
                             axes=[0, 1, 3],
                             starts=[minus_3, 0, 2],
                             ends=[3, 100, minus_1])
592
        out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
                'ends': np.array([3, 100, -1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


617
class TestSliceApiWithTensor(unittest.TestCase):
618

619 620 621 622 623 624
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
625 626 627 628
            a_1 = paddle.slice(a,
                               axes=axes,
                               starts=paddle.to_tensor(starts, dtype='int32'),
                               ends=paddle.to_tensor(ends, dtype='int32'))
629 630
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

631
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
632

W
WeiXin 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
647
            np.testing.assert_array_equal(y_paddle.numpy(), y_np)
W
WeiXin 已提交
648

649

H
hong 已提交
650
class TestSliceApiEager(unittest.TestCase):
651

H
hong 已提交
652 653 654 655 656 657 658 659 660 661
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
            with _test_eager_guard():
                a = paddle.rand(shape=[4, 5, 6], dtype='float32')
                a.stop_gradient = False
                axes = [0, 1, 2]
                starts = [-3, 0, 2]
                ends = [3, 2, 4]
                a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

662 663 664 665
                a_2 = paddle.slice(a,
                                   axes=axes,
                                   starts=paddle.to_tensor(starts),
                                   ends=paddle.to_tensor(ends))
666
                np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
H
hong 已提交
667 668 669
                a_1.backward()
                grad_truth = paddle.zeros_like(a)
                grad_truth[-3:3, 0:2, 2:4] = 1
670
                np.testing.assert_array_equal(grad_truth, a.gradient())
H
hong 已提交
671

672 673 674
                np.testing.assert_allclose(a_1.numpy(),
                                           a[-3:3, 0:2, 2:4],
                                           rtol=1e-05)
H
hong 已提交
675 676


677
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
678

679 680 681 682 683 684 685 686
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

687 688
        self.place = fluid.CUDAPlace(
            0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
689 690 691 692 693
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
694 695 696
                fluid.data(name='x0', shape=self.shape, dtype="float32"),
                fluid.data(name='x1', shape=self.shape, dtype="float32"),
                fluid.data(name='x2', shape=self.shape, dtype="float32")
697 698 699 700 701 702 703 704 705 706 707 708 709 710
            ]

            for each_x in x:
                each_x.stop_gradient = False

            arr = layers.create_array(dtype="float32")
            for i in range(3):
                idx = layers.array_length(arr)
                arr = layers.array_write(x=x[i], i=idx, array=arr)

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
711 712
                end = fluid.layers.array_length(
                    arr) - 1  # dtype of end is int64
713
                self.sliced_arr = slice_arr = arr[self.start:end]
714 715 716
                output, _ = fluid.layers.tensor_array_to_tensor(slice_arr,
                                                                axis=self.axis,
                                                                use_stack=True)
717 718 719 720
            elif case_num == 3:
                value_int64 = fluid.layers.fill_constant([1], "int64",
                                                         2147483648)
                self.sliced_arr = slice_arr = arr[self.start:value_int64]
721 722 723
                output, _ = fluid.layers.tensor_array_to_tensor(slice_arr,
                                                                axis=self.axis,
                                                                use_stack=True)
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            g_vars = list(
                map(main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x]))
            self.out, self.g_x0, self.g_x1, self.g_x2 = \
                self.exe.run(main_program,
                             feed = {'x0': self.data,
                                     'x1': self.data,
                                     'x2': self.data},
                             fetch_list=[output] + g_vars)

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
743 744 745 746
        np.testing.assert_array_equal(self.out, self.data)
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
747 748 749 750 751 752 753 754

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
755 756 757 758 759
        np.testing.assert_array_equal(
            self.out, np.stack([self.data, self.data], axis=self.axis))
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
760

761 762 763 764 765 766 767
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
768 769 770 771 772 773
        np.testing.assert_array_equal(
            self.out, np.stack([self.data, self.data, self.data],
                               axis=self.axis))
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data))
774

775

776
class TestImperativeVarBaseGetItem(unittest.TestCase):
777

778 779 780 781 782 783 784 785 786 787 788
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
            sliced = var[:, 10:, :var.shape[1]]  # var.shape[1] is 80L here
            self.assertEqual(sliced.shape, [2, 70, 80])

            sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[:, 1.1:, :var.shape[1]]

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


807
class TestInferShape(unittest.TestCase):
808

809 810 811 812 813 814
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
815
        self.assertEqual(out0.shape, (3, -1, 5))
816

817 818 819 820 821 822
    def test_axis_less_than_zero(self):
        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

823 824 825
            pp_slice = paddle.slice(x, [
                100,
            ], [0], [1])
826
            np_slice = x_arr[:, :, 0:1]
827
            np.testing.assert_array_equal(pp_slice, np_slice)
828

829
            pp_slice = paddle.slice(x, (-100, ), [0], [1])
830
            np_slice = x_arr[0:1]
831
            np.testing.assert_array_equal(pp_slice, np_slice)
832 833 834 835 836

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
837
                np.reshape(np.array([], dtype=np.int32), (0, )))
838
            ends = paddle.to_tensor(
839
                np.reshape(np.array([], dtype=np.int32), (0, )))
840 841 842 843 844 845 846 847 848 849 850 851 852

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

853

854 855 856
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestImperativeCUDAPinnedInput(unittest.TestCase):
857

858
    def test_input_cuda_pinned_var(self):
859
        _enable_legacy_dygraph()
860 861
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
862 863 864 865 866
            var = core.VarBase(value=data,
                               name='',
                               persistable=False,
                               place=fluid.CUDAPinnedPlace(),
                               zero_copy=False)
867 868 869 870
            sliced = var[:, 10:, :var.shape[1]]
            self.assertEqual(sliced.shape, [2, 70, 80])


871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
class TestSliceDoubleGradCheck(unittest.TestCase):

    def slice_wrapper(self, x):
        return paddle.slice(x[0],
                            axes=[0, 1, 2],
                            starts=[-3, 0, 2],
                            ends=[3, 2, 4])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [4, 5, 6], False, dtype)
        data.persistable = True
        out = paddle.slice(data,
                           axes=[0, 1, 2],
                           starts=[-3, 0, 2],
                           ends=[3, 2, 4])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.slice_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSliceTripleGradCheck(unittest.TestCase):

    def slice_wrapper(self, x):
        return paddle.slice(x[0],
                            axes=[0, 1, 2],
                            starts=[-3, 0, 2],
                            ends=[3, 2, 4])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [4, 5, 6], False, dtype)
        data.persistable = True
        out = paddle.slice(data,
                           axes=[0, 1, 2],
                           starts=[-3, 0, 2],
                           ends=[3, 2, 4])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.slice_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
whs 已提交
957
if __name__ == '__main__':
H
hong 已提交
958
    paddle.enable_static()
W
whs 已提交
959
    unittest.main()