test_slice_op.py 27.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
whs 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid.core as core
20
from op_test import OpTest, convert_float_to_uint16
21
import paddle.fluid as fluid
22
import paddle.fluid.layers as layers
23
import paddle
H
hong 已提交
24
from paddle.fluid.framework import _test_eager_guard
W
whs 已提交
25

26 27
paddle.enable_static()

W
whs 已提交
28

29 30
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
31 32 33 34 35 36 37 38 39
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
40 41
            'ends': self.ends,
            'infer_flags': self.infer_flags
W
whs 已提交
42 43 44
        }

    def config(self):
45
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
46 47 48
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
49
        self.infer_flags = [1, 1, 1]
W
whs 已提交
50 51 52 53 54
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

55 56 57
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)

W
whs 已提交
58

59 60
class TestCase1(TestSliceOp):
    def config(self):
61
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
62 63 64 65 66 67 68 69 70
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
71
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
72 73 74 75 76 77 78 79
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
80 81 82 83 84 85 86 87 88 89
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
90
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
91 92 93 94
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
95
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
96 97 98 99
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
100
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
101 102 103 104 105 106 107 108 109
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


110 111
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
112
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
113 114 115 116 117 118 119 120 121 122
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
123
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
124 125 126 127 128 129 130 131 132 133
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
134
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
135 136 137 138 139 140 141 142 143 144
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
145
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
146 147 148 149 150 151 152 153 154 155
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
156
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
157 158 159 160 161 162 163 164 165 166 167
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
168 169 170
    def setUp(self):
        self.op_type = "slice"
        self.config()
171 172 173 174

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
175
                (1)).astype('int64') * ele))
176 177

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
178 179 180
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
181
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
182
            'ends': self.ends,
183
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
184 185 186
        }

    def config(self):
187
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
188
        self.starts = [1, 0, 2]
189
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
190
        self.axes = [0, 1, 2]
191 192 193 194
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
195 196 197 198 199 200 201 202

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


203 204 205
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
206 207 208
    def setUp(self):
        self.op_type = "slice"
        self.config()
209 210 211 212 213 214 215 216

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
217 218 219
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
220
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
221
            'ends': self.ends,
222
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
223 224 225 226
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
227
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
228 229
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
230
        self.axes = [0, 1, 2]
231 232 233 234 235
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
236 237 238 239 240 241 242 243

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


244 245 246
class TestSliceOp_decs_dim_5_starts_ListTensor(
        TestSliceOp_decs_dim_starts_ListTensor):
    def config(self):
247
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
248 249 250 251 252 253 254 255 256 257 258 259 260
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
261 262 263
    def setUp(self):
        self.op_type = "slice"
        self.config()
264 265 266 267 268
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32")
        }
H
Hongyu Liu 已提交
269 270 271
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
272
            #'starts': self.starts,
H
Hongyu Liu 已提交
273
            'ends': self.ends,
274
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
275 276 277 278
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
279
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
280 281 282 283 284 285
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
286 287 288 289 290 291 292 293

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


294 295 296
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
297 298 299
    def setUp(self):
        self.op_type = "slice"
        self.config()
300 301 302 303

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
304
                self.starts, dtype="int64"),
305 306 307
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
H
Hongyu Liu 已提交
308 309 310
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
311 312 313
            #'starts': self.starts,
            #'ends': self.ends_infer,
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
314 315 316
        }

    def config(self):
317
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
318 319 320 321 322
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
323 324 325 326 327 328 329 330

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
353
    def config(self):
354
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
355 356
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
357
        self.axes = [0, 1, 2]
358 359 360 361 362 363 364 365 366
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
367 368


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("y" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            'EndsTensorList': ends_tensor
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends_infer,
            'infer_flags': self.infer_flags
        }

W
whs 已提交
395
    def config(self):
396
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
397 398 399 400 401 402 403 404 405 406 407 408 409
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
410 411


412
# Test CUDA float16
413 414
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
415 416 417 418 419 420 421 422 423 424 425 426 427
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

428 429 430 431 432 433 434
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
435
        self.infer_flags = [1, 1, 1]
436 437 438 439 440 441 442 443 444 445 446 447 448

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'], 'Out', max_relative_error=0.006)


449 450
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
451 452 453 454 455 456 457 458 459 460 461 462 463
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

464 465
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
466
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
467 468 469 470
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
471
        self.infer_flags = [1]
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'],
                'Out',
                max_relative_error=0.006,
                numeric_grad_delta=0.5)


488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
class TestBF16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out')


517
# Test python API
518
class TestSliceAPI(unittest.TestCase):
519
    def test_1(self):
520
        input = np.random.random([3, 4, 5, 6]).astype("float64")
521
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
522
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
523 524 525 526 527 528 529 530 531
        starts = fluid.layers.data(
            name='starts', shape=[1, 3], append_batch_size=False)
        ends = fluid.layers.data(
            name='ends', shape=[3], append_batch_size=False)

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
532
            dtype="float64")
533

534 535 536
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

537
        out_1 = fluid.layers.slice(
538
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        out_2 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
        out_3 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
        out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
                'ends': np.array([3, 100, -1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(
                    starts, dtype='int32'),
                ends=paddle.to_tensor(
                    ends, dtype='int32'))
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))

W
WeiXin 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
            self.assertTrue(np.array_equal(y_paddle.numpy(), y_np))

602

H
hong 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
class TestSliceApiEager(unittest.TestCase):
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
            with _test_eager_guard():
                a = paddle.rand(shape=[4, 5, 6], dtype='float32')
                a.stop_gradient = False
                axes = [0, 1, 2]
                starts = [-3, 0, 2]
                ends = [3, 2, 4]
                a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

                a_2 = paddle.slice(
                    a,
                    axes=axes,
                    starts=paddle.to_tensor(starts),
                    ends=paddle.to_tensor(ends))

                a_1.backward()
                grad_truth = paddle.zeros_like(a)
                grad_truth[-3:3, 0:2, 2:4] = 1
                self.assertTrue(np.array_equal(grad_truth, a.gradient()))

                self.assertTrue(np.allclose(a_1.numpy(), a[-3:3, 0:2, 2:4]))


628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

        self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
                fluid.data(
                    name='x0', shape=self.shape, dtype="float32"), fluid.data(
                        name='x1', shape=self.shape, dtype="float32"),
                fluid.data(
                    name='x2', shape=self.shape, dtype="float32")
            ]

            for each_x in x:
                each_x.stop_gradient = False

            arr = layers.create_array(dtype="float32")
            for i in range(3):
                idx = layers.array_length(arr)
                arr = layers.array_write(x=x[i], i=idx, array=arr)

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
663 664
                end = fluid.layers.array_length(
                    arr) - 1  # dtype of end is int64
665 666 667
                self.sliced_arr = slice_arr = arr[self.start:end]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
668 669 670 671 672 673
            elif case_num == 3:
                value_int64 = fluid.layers.fill_constant([1], "int64",
                                                         2147483648)
                self.sliced_arr = slice_arr = arr[self.start:value_int64]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            g_vars = list(
                map(main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x]))
            self.out, self.g_x0, self.g_x1, self.g_x2 = \
                self.exe.run(main_program,
                             feed = {'x0': self.data,
                                     'x1': self.data,
                                     'x2': self.data},
                             fetch_list=[output] + g_vars)

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(np.array_equal(self.out, self.data))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out, np.stack(
                    [self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out,
                np.stack(
                    [self.data, self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))

729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
            sliced = var[:, 10:, :var.shape[1]]  # var.shape[1] is 80L here
            self.assertEqual(sliced.shape, [2, 70, 80])

            sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[:, 1.1:, :var.shape[1]]

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


759 760 761 762 763 764 765 766 767
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
        self.assertEqual(out0.shape, (3, 3, 5))

768 769 770 771 772 773 774 775 776 777 778
    def test_axis_less_than_zero(self):

        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

            pp_slice = paddle.slice(x, [100, ], [0], [1])
            np_slice = x_arr[:, :, 0:1]
            self.assertTrue(np.array_equal(pp_slice, np_slice))

779
            pp_slice = paddle.slice(x, (-100, ), [0], [1])
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            np_slice = x_arr[0:1]
            self.assertTrue(np.array_equal(pp_slice, np_slice))

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
                np.reshape(
                    np.array(
                        [], dtype=np.int32), (0, )))
            ends = paddle.to_tensor(
                np.reshape(
                    np.array(
                        [], dtype=np.int32), (0, )))

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = core.VarBase(
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False)
            sliced = var[:, 10:, :var.shape[1]]
            self.assertEqual(sliced.shape, [2, 70, 80])


W
whs 已提交
824
if __name__ == '__main__':
H
hong 已提交
825
    paddle.enable_static()
W
whs 已提交
826
    unittest.main()