“6fa4d0867a61947103d4a488c5f39a27cf6e161b”上不存在“src/operators/math/depthwise_conv3x3_int8.h”
test_slice_op.py 22.2 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
whs 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid.core as core
20
from op_test import OpTest
21
import paddle.fluid as fluid
22
import paddle.fluid.layers as layers
W
whs 已提交
23 24


25 26
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
27 28 29 30 31 32 33 34 35
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
36 37
            'ends': self.ends,
            'infer_flags': self.infer_flags
W
whs 已提交
38 39 40
        }

    def config(self):
41
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
42 43 44
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
45
        self.infer_flags = [1, 1, 1]
W
whs 已提交
46 47 48 49 50
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

51 52 53
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)

W
whs 已提交
54

55 56
class TestCase1(TestSliceOp):
    def config(self):
57
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
58 59 60 61 62 63 64 65 66
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
67
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
68 69 70 71 72 73 74 75
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
76 77 78 79 80 81 82 83 84 85
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
86
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
87 88 89 90
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
91
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
92 93 94 95
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
96
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
97 98 99 100 101 102 103 104 105
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


106 107
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
108
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
109 110 111 112 113 114 115 116 117 118
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
119
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
120 121 122 123 124 125 126 127 128 129
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
130
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
131 132 133 134 135 136 137 138 139 140
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
141
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
142 143 144 145 146 147 148 149 150 151
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
152
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
153 154 155 156 157 158 159 160 161 162 163
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
164 165 166
    def setUp(self):
        self.op_type = "slice"
        self.config()
167 168 169 170

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
171
                (1)).astype('int64') * ele))
172 173

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
174 175 176
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
177
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
178
            'ends': self.ends,
179
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
180 181 182
        }

    def config(self):
183
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
184
        self.starts = [1, 0, 2]
185
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
186
        self.axes = [0, 1, 2]
187 188 189 190
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
191 192 193 194 195 196 197 198

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


199 200 201
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
202 203 204
    def setUp(self):
        self.op_type = "slice"
        self.config()
205 206 207 208 209 210 211 212

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
213 214 215
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
216
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
217
            'ends': self.ends,
218
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
219 220 221 222
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
223
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
224 225
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
226
        self.axes = [0, 1, 2]
227 228 229 230 231
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
232 233 234 235 236 237 238 239

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


240 241 242
class TestSliceOp_decs_dim_5_starts_ListTensor(
        TestSliceOp_decs_dim_starts_ListTensor):
    def config(self):
243
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
244 245 246 247 248 249 250 251 252 253 254 255 256
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
257 258 259
    def setUp(self):
        self.op_type = "slice"
        self.config()
260 261 262 263 264
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32")
        }
H
Hongyu Liu 已提交
265 266 267
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
268
            #'starts': self.starts,
H
Hongyu Liu 已提交
269
            'ends': self.ends,
270
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
271 272 273 274
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
275
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
276 277 278 279 280 281
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
282 283 284 285 286 287 288 289

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


290 291 292
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
293 294 295
    def setUp(self):
        self.op_type = "slice"
        self.config()
296 297 298 299

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
300
                self.starts, dtype="int64"),
301 302 303
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
H
Hongyu Liu 已提交
304 305 306
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
307 308 309
            #'starts': self.starts,
            #'ends': self.ends_infer,
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
310 311 312
        }

    def config(self):
313
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
314 315 316 317 318
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
319 320 321 322 323 324 325 326

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
349
    def config(self):
350
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
351 352
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
353
        self.axes = [0, 1, 2]
354 355 356 357 358 359 360 361 362
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
363 364


365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("y" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            'EndsTensorList': ends_tensor
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends_infer,
            'infer_flags': self.infer_flags
        }

W
whs 已提交
391
    def config(self):
392
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
393 394 395 396 397 398 399 400 401 402 403 404 405
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
406 407


408
# Test CUDA float16
409 410
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
411 412 413 414 415 416 417 418 419 420 421 422 423
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

424 425 426 427 428 429 430
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
431
        self.infer_flags = [1, 1, 1]
432 433 434 435 436 437 438 439 440 441 442 443 444

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'], 'Out', max_relative_error=0.006)


445 446
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
447 448 449 450 451 452 453 454 455 456 457 458 459
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

460 461
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
462
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
463 464 465 466
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
467
        self.infer_flags = [1]
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'],
                'Out',
                max_relative_error=0.006,
                numeric_grad_delta=0.5)


484
# Test python API
485
class TestSliceAPI(unittest.TestCase):
486
    def test_1(self):
487
        input = np.random.random([3, 4, 5, 6]).astype("float64")
488
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
489
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
490 491 492 493 494 495 496 497 498
        starts = fluid.layers.data(
            name='starts', shape=[1, 3], append_batch_size=False)
        ends = fluid.layers.data(
            name='ends', shape=[3], append_batch_size=False)

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
499
            dtype="float64")
500

501 502 503
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

504
        out_1 = fluid.layers.slice(
505
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        out_2 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
        out_3 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
        out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
                'ends': np.array([3, 100, -1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

        self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
                fluid.data(
                    name='x0', shape=self.shape, dtype="float32"), fluid.data(
                        name='x1', shape=self.shape, dtype="float32"),
                fluid.data(
                    name='x2', shape=self.shape, dtype="float32")
            ]

            for each_x in x:
                each_x.stop_gradient = False

            arr = layers.create_array(dtype="float32")
            for i in range(3):
                idx = layers.array_length(arr)
                arr = layers.array_write(x=x[i], i=idx, array=arr)

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
570 571
                end = fluid.layers.array_length(
                    arr) - 1  # dtype of end is int64
572 573 574
                self.sliced_arr = slice_arr = arr[self.start:end]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
575 576 577 578 579 580
            elif case_num == 3:
                value_int64 = fluid.layers.fill_constant([1], "int64",
                                                         2147483648)
                self.sliced_arr = slice_arr = arr[self.start:value_int64]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            g_vars = list(
                map(main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x]))
            self.out, self.g_x0, self.g_x1, self.g_x2 = \
                self.exe.run(main_program,
                             feed = {'x0': self.data,
                                     'x1': self.data,
                                     'x2': self.data},
                             fetch_list=[output] + g_vars)

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(np.array_equal(self.out, self.data))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out, np.stack(
                    [self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out,
                np.stack(
                    [self.data, self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))

636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
            sliced = var[:, 10:, :var.shape[1]]  # var.shape[1] is 80L here
            self.assertEqual(sliced.shape, [2, 70, 80])

            sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[:, 1.1:, :var.shape[1]]

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


W
whs 已提交
666 667
if __name__ == '__main__':
    unittest.main()