test_elementwise_nn_grad.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25 26 27 28 29
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
30

31 32
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
33
        # the shape of input variable should be clearly specified, not inlcude -1.
34
        shape = [2, 3, 4, 5]
35 36 37 38 39 40 41 42 43 44 45
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

46 47 48 49 50
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
51 52

    def test_grad(self):
53
        paddle.enable_static()
54 55 56 57 58 59 60 61
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
62

63 64
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
65
        # the shape of input variable should be clearly specified, not inlcude -1.
66
        shape = [2, 3, 4, 5]
67 68 69 70 71 72 73 74 75 76 77
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

78 79 80 81 82
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
83 84

    def test_grad(self):
85
        paddle.enable_static()
86 87 88 89 90 91 92 93
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
94

95 96
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
97
        # the shape of input variable should be clearly specified, not inlcude -1.
98
        shape = [2, 3, 4, 5]
99 100 101 102 103 104 105 106 107 108 109
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

110 111 112 113 114
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
115 116

    def test_grad(self):
117
        paddle.enable_static()
118 119 120 121 122 123 124 125
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
126

127 128
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
129
        # the shape of input variable should be clearly specified, not inlcude -1.
130
        shape = [2, 3, 4, 5]
131 132 133 134 135 136 137 138 139 140 141
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

142 143 144 145 146
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
147 148

    def test_grad(self):
149
        paddle.enable_static()
150 151 152 153 154 155 156 157
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
158

159 160 161
    def subtract_wrapper(self, x):
        return paddle.subtract(x[0], x[1])

162 163
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
164
        # the shape of input variable should be clearly specified, not inlcude -1.
165
        shape = [2, 3, 4, 5]
166 167 168 169 170 171 172 173 174 175 176
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

177 178 179 180 181 182 183 184 185 186
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.subtract_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place)
187 188

    def test_grad(self):
189
        paddle.enable_static()
190 191 192 193 194 195 196 197
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
198

199 200
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
201
        # the shape of input variable should be clearly specified, not inlcude -1.
202
        shape = [2, 3, 4, 5]
203 204 205 206 207 208 209 210 211 212 213
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

214 215 216 217 218
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
219 220

    def test_grad(self):
221
        paddle.enable_static()
222 223 224 225 226 227 228 229
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
230

231 232 233
    def divide_wrapper(self, x):
        return paddle.divide(x[0], x[1])

234 235
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
236
        # the shape of input variable should be clearly specified, not inlcude -1.
237
        shape = [2, 3, 4, 5]
238 239 240 241 242 243 244 245 246 247 248 249
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

250 251 252 253 254 255 256 257 258 259 260 261
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps,
                                           atol=1e-3)
        gradient_checker.double_grad_check_for_dygraph(self.divide_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place,
                                                       atol=1e-3)
262 263

    def test_grad(self):
264
        paddle.enable_static()
265 266 267 268 269 270 271 272
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
273

274 275
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
276
        # the shape of input variable should be clearly specified, not inlcude -1.
277
        shape = [2, 3, 4, 5]
278 279 280 281 282 283 284 285 286 287 288 289
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[1:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

290 291 292 293 294 295
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps,
                                           atol=1e-3)
296 297

    def test_grad(self):
298
        paddle.enable_static()
299 300 301 302 303 304 305
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


306
class TestElementwiseAddTripleGradCheck(unittest.TestCase):
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

323 324 325 326 327
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
328 329

    def test_grad(self):
330
        paddle.enable_static()
331 332 333 334 335 336 337 338
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

355 356 357 358 359
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
360 361

    def test_grad(self):
362
        paddle.enable_static()
363 364 365 366 367 368 369
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


370
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
371

372 373 374
    def multiply_wrapper(self, x):
        return paddle.multiply(x[0], x[1])

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
392
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
393 394 395 396 397
        gradient_checker.triple_grad_check_for_dygraph(
            self.multiply_wrapper, [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place)
398
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
399 400

    def test_grad(self):
401
        paddle.enable_static()
402 403 404 405 406 407 408 409
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

426 427 428 429 430
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
431 432

    def test_grad(self):
433
        paddle.enable_static()
434 435 436 437 438 439 440
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


441 442
if __name__ == "__main__":
    unittest.main()