test_conv2d_transpose_op.py 37.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
deconv  
zchen0211 已提交
16 17
import unittest
import numpy as np
18

K
Kaipeng Deng 已提交
19
import paddle
20
import paddle.nn as nn
21

K
Kaipeng Deng 已提交
22
paddle.enable_static()
23
import paddle.fluid.core as core
24
import paddle.fluid as fluid
25 26 27
from paddle.fluid import Program, program_guard
from test_attribute_var import UnittestBase
from op_test import OpTest
Z
deconv  
zchen0211 已提交
28 29


C
chengduoZH 已提交
30
def conv2dtranspose_forward_naive(input_, filter_, attrs):
31 32 33 34 35 36 37 38
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
39
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
40 41
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
42
    assert in_c == f_c
Y
Yibing Liu 已提交
43
    out_c = f_out_c * groups
M
minqiyang 已提交
44
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
45

C
chengduoZH 已提交
46 47
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
48 49 50 51

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
52 53 54
        for input_size, filter_size, stride_size in zip(input_shape,
                                                        kernel_size,
                                                        kernel_stride):
55
            out_size = int((input_size + stride_size - 1) / stride_size)
56 57
            pad_sum = np.max(
                ((out_size - 1) * stride_size + filter_size - input_size, 0))
58 59 60 61 62 63 64 65 66 67
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
68 69
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
70 71 72 73 74 75 76 77
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
78 79 80 81
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
82 83
    if 'output_size' in attrs:
        output_size = attrs['output_size']
84 85
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
L
LielinJiang 已提交
86 87 88 89 90
    out_pad_h = 0
    out_pad_w = 0
    if 'output_padding' in attrs:
        out_pad_h = attrs['output_padding'][0]
        out_pad_w = attrs['output_padding'][1]
91 92
    out = np.zeros((in_n, out_c, out_h + out_pad_h, out_w + out_pad_w),
                   dtype=input_.dtype)
Z
deconv  
zchen0211 已提交
93 94 95 96

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
97 98 99 100 101 102 103 104 105 106 107 108
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
109
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
110 111
                        out[n, g * f_out_c + k, i1:i2:dilations[0],
                            j1:j2:dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
112

113 114
    out = out[:, :, pad_h_0:out_h - pad_h_1 + out_pad_h,
              pad_w_0:out_w - pad_w_1 + out_pad_w]
115 116
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
117 118 119
    return out


C
cnn 已提交
120
class TestConv2DTransposeOp(OpTest):
121

Z
deconv  
zchen0211 已提交
122
    def setUp(self):
Z
zchen0211 已提交
123
        # init as conv transpose
124
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
125
        self.need_check_grad = True
J
Jacek Czaja 已提交
126
        self.is_test = False
127
        self.use_cudnn = False
J
Jacek Czaja 已提交
128
        self.use_mkldnn = False
129
        self.output_size = None
L
LielinJiang 已提交
130
        self.output_padding = []
131 132 133
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
134 135 136
        self.init_op_type()
        self.init_test_case()

137 138
        input_ = np.random.random(self.input_size).astype(self.dtype)
        filter_ = np.random.random(self.filter_size).astype(self.dtype)
Z
deconv  
zchen0211 已提交
139 140 141 142 143

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
144
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
145
            'groups': self.groups,
146 147
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
148 149 150
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
Z
deconv  
zchen0211 已提交
151
        }
152 153
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
154

L
LielinJiang 已提交
155 156 157
        if len(self.output_padding) > 0:
            self.attrs['output_padding'] = self.output_padding

C
chengduoZH 已提交
158
        output = conv2dtranspose_forward_naive(input_, filter_,
159
                                               self.attrs).astype(self.dtype)
C
chengduoZH 已提交
160

Z
deconv  
zchen0211 已提交
161 162 163
        self.outputs = {'Output': output}

    def test_check_output(self):
164
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
165 166
        if self.use_cudnn:
            place = core.CUDAPlace(0)
167 168
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
169
        else:
170
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Z
deconv  
zchen0211 已提交
171

Z
zchen0211 已提交
172
    def test_check_grad_no_input(self):
173 174 175
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
176 177 178 179
                self.check_grad_with_place(place, ['Filter'],
                                           'Output',
                                           max_relative_error=0.02,
                                           no_grad_set=set(['Input']))
180
            else:
181 182 183
                self.check_grad(['Filter'],
                                'Output',
                                no_grad_set=set(['Input']))
Z
zchen0211 已提交
184 185

    def test_check_grad_no_filter(self):
186 187 188
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
189 190 191
                self.check_grad_with_place(place, ['Input'],
                                           'Output',
                                           no_grad_set=set(['Filter']))
192
            else:
193 194 195
                self.check_grad(['Input'],
                                'Output',
                                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
196

Z
zchen0211 已提交
197
    def test_check_grad(self):
198 199 200
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
201 202 203 204
                self.check_grad_with_place(place,
                                           set(['Input', 'Filter']),
                                           'Output',
                                           max_relative_error=0.02)
205
            else:
206 207 208
                self.check_grad(set(['Input', 'Filter']),
                                'Output',
                                max_relative_error=0.02)
C
chengduoZH 已提交
209 210 211 212 213

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
214
        self.groups = 1
C
chengduoZH 已提交
215 216 217 218 219 220
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
221

Z
zchen0211 已提交
222

C
cnn 已提交
223
class TestWithSymmetricPad(TestConv2DTransposeOp):
224

C
chengduoZH 已提交
225 226 227 228
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
229
        self.groups = 1
C
chengduoZH 已提交
230 231 232 233 234
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
235
class TestWithAsymmetricPad(TestConv2DTransposeOp):
236

237 238 239 240 241 242 243 244 245 246
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
247
class TestWithSAMEPad(TestConv2DTransposeOp):
248

249
    def init_test_case(self):
250 251
        self.stride = [2, 1]
        self.dilations = [1, 2]
252
        self.groups = 1
253
        self.input_size = [2, 3, 6, 5]  # NCHW
254
        f_c = self.input_size[1]
255
        self.filter_size = [f_c, 6, 4, 3]
256 257 258
        self.padding_algorithm = 'SAME'


C
cnn 已提交
259
class TestWithVALIDPad(TestConv2DTransposeOp):
260

261 262 263 264 265 266 267 268 269 270
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


C
cnn 已提交
271
class TestWithGroups(TestConv2DTransposeOp):
272

Y
Yibing Liu 已提交
273 274 275 276 277 278 279 280 281 282
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
cnn 已提交
283
class TestWithStride(TestConv2DTransposeOp):
284

C
chengduoZH 已提交
285 286 287 288
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
289
        self.groups = 1
C
chengduoZH 已提交
290 291 292 293 294
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
295
class TestWithDilation(TestConv2DTransposeOp):
296

C
chengduoZH 已提交
297 298 299
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
300
        self.groups = 1
C
chengduoZH 已提交
301 302 303 304 305 306
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
307
class TestWithEvenUpsample(TestConv2DTransposeOp):
308

309 310 311 312 313 314 315 316 317 318 319
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
320
class TestWithEvenUpsampleOutputPadding(TestConv2DTransposeOp):
321

L
LielinJiang 已提交
322 323 324 325 326 327 328 329 330 331 332
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
333
class Test_NHWC(TestConv2DTransposeOp):
334

335 336 337 338 339 340 341 342 343 344 345
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
346
class TestWithSymmetricPad_NHWC(TestConv2DTransposeOp):
347

348 349 350 351 352 353 354 355 356 357 358
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
359
class TestWithAsymmetricPad_NHWC(TestConv2DTransposeOp):
360

361 362 363 364 365 366 367 368 369 370 371
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
372
class TestWithGroups_NHWC(TestConv2DTransposeOp):
373

374 375 376 377 378 379 380 381 382 383 384
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
385
class TestWithStride_NHWC(TestConv2DTransposeOp):
386

387 388 389 390 391 392 393 394 395 396 397
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
398
class TestWithDilation_NHWC(TestConv2DTransposeOp):
399

400 401 402 403 404 405 406 407 408 409 410
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
411
class TestWithEvenUpsample_NHWC(TestConv2DTransposeOp):
412

413 414 415 416 417 418 419 420 421 422 423 424
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
cnn 已提交
425
class TestWithEvenUpsample_NHWC_output_padding(TestConv2DTransposeOp):
426

L
LielinJiang 已提交
427 428 429 430 431 432 433 434 435 436 437 438
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
439
# ------------ test_cudnn ------------
440 441
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
442
class TestCUDNN(TestConv2DTransposeOp):
443

Z
deconv  
zchen0211 已提交
444
    def init_op_type(self):
445 446
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
447

Z
deconv  
zchen0211 已提交
448

449 450
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
451
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
452

C
chengduoZH 已提交
453 454 455
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
456
        self.groups = 1
C
chengduoZH 已提交
457 458 459 460 461 462
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
463 464
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
465 466


467 468 469
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
488

489 490
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
491
        self.stride = [1, 2]
492 493 494 495 496 497 498 499 500 501 502 503 504 505
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


521 522
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
523
class TestCUDNNWithStride(TestWithStride):
524

C
chengduoZH 已提交
525 526 527
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
528
        self.groups = 1
C
chengduoZH 已提交
529 530 531 532 533 534
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
535 536
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
537 538


539 540
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
541
class TestCUDNNWithGroups(TestWithGroups):
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


557 558 559 560
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
561

562 563 564 565 566
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


567 568
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
569
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
570 571 572 573 574 575 576 577 578
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
579
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
580

581 582 583

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
584
class TestCUDNN_NHWC(TestConv2DTransposeOp):
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


697 698
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
699
class TestCUDNN_FP16(TestConv2DTransposeOp):
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.need_check_grad = False
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"

    def test_check_output(self):
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(
                place, atol=0.02, check_dygraph=(self.use_mkldnn == False))
        else:
            self.check_output(check_dygraph=(self.use_mkldnn == False))


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC_FP16(TestCUDNN_FP16):
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC_FP16(TestCUDNN_FP16):
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC_FP16(TestCUDNN_FP16):
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC_FP16(TestCUDNN_FP16):
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC_FP16(TestCUDNN_FP16):
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC_FP16(TestCUDNN_FP16):
808

809 810 811 812 813 814 815 816 817 818 819
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'
820 821


C
cnn 已提交
822
class TestConv2DTransposeAPI(unittest.TestCase):
823

824
    def test_case1(self):
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
        data1 = fluid.layers.data(name='data1',
                                  shape=[3, 5, 5],
                                  dtype='float32')
        data2 = fluid.layers.data(name='data2',
                                  shape=[5, 5, 3],
                                  dtype='float32')
        out1 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             data_format='NCHW')
        out2 = fluid.layers.conv2d_transpose(input=data2,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             data_format='NHWC')
        out3 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding=[[0, 0], [1, 1], [1, 1],
                                                      [0, 0]],
                                             data_format='NHWC')
        out4 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=3,
                                             num_filters=6,
                                             filter_size=3,
                                             padding=[[0, 0], [0, 0], [2, 1],
                                                      [0, 0]],
                                             data_format='NCHW')
        out5 = fluid.layers.conv2d_transpose(input=data2,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding='SAME',
                                             data_format='NCHW')
        out6 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding='VALID',
                                             data_format='NHWC')
        out7 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             output_size=[7, 7],
                                             padding=[0, 0],
                                             data_format='NHWC')
873 874 875 876 877 878 879 880 881 882

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
883 884 885 886 887 888 889
        results = exe.run(fluid.default_main_program(),
                          feed={
                              "data1": data1_np,
                              "data2": data2_np
                          },
                          fetch_list=[out1, out2, out3, out4, out5, out6, out7],
                          return_numpy=True)
890 891 892 893 894 895 896 897 898
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


C
cnn 已提交
899
class TestConv2DTransposeOpException(unittest.TestCase):
900

901 902 903 904
    def test_exception(self):
        data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")

        def attr_data_format():
905 906 907 908 909
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                data_format="NCDHW")
910 911 912 913

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
914 915 916 917 918
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding='Vald')
919 920 921 922

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
923 924 925 926 927 928
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding=[[1, 1], [1, 1], [0, 0],
                                                         [0, 0]])
929 930 931 932

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
933 934 935 936 937 938 939
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding=[[1, 1], [0, 0], [0, 0],
                                                         [1, 1]],
                                                data_format='NHWC')
940 941 942

        self.assertRaises(ValueError, attr_padding_with_data_format)

943 944 945
        error_input = fluid.layers.data(name='error_data',
                                        shape=[1],
                                        dtype="float32")
946 947

        def error_input_size():
948 949 950 951
            out = fluid.layers.conv2d_transpose(input=error_input,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3)
952 953 954 955

        self.assertRaises(ValueError, error_input_size)

        def error_groups():
956 957 958 959 960
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=0,
                                                num_filters=6,
                                                filter_size=3,
                                                data_format='NHWC')
961 962 963

        self.assertRaises(ValueError, error_groups)

964

965
class TestConv2DTransposeRepr(unittest.TestCase):
966

967 968 969 970 971 972 973 974 975 976 977
    def test_case(self):
        paddle.disable_static()
        x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
        conv = nn.Conv2DTranspose(4, 6, (3, 3), output_padding=1, stride=2)
        print(conv)
        y_var = conv(x_var)
        y_np = y_var.numpy()
        self.assertIsNotNone(y_np)
        paddle.enable_static()


978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
class TestTensorOutputSize1(UnittestBase):

    def init_info(self):
        self.shapes = [[2, 3, 8, 8]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size1'

    def var_prefix(self):
        return "Vars["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.paddle.nn.functional.conv2d_transpose(
            x, w_var, stride=2, output_size=output_size)
        return out

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(8, 8)
            x = paddle.randn([2, 3, 8, 8])
            x.stop_gradient = False
            feat = fc(x)
            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            np.testing.assert_allclose(res[1].shape, (2, 6, 17, 17))

            paddle.static.save_inference_model(self.save_path, [x], [feat, out],
                                               exe)
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            np.testing.assert_allclose(infer_outs[1].shape, (2, 6, 17, 17))


class TestTensorOutputSize2(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size2'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        out = paddle.paddle.nn.functional.conv2d_transpose(
            x, w_var, stride=2, output_size=output_size)
        return out


class TestTensorOutputSize3(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size3'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.fluid.layers.conv2d_transpose(x,
                                                   num_filters=6,
                                                   output_size=output_size,
                                                   filter_size=3,
                                                   stride=2)
        return out


class TestTensorOutputSize4(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size4'

    def call_func(self, x):
        output_size = [17, paddle.assign([17])]
        out = paddle.fluid.layers.conv2d_transpose(x,
                                                   num_filters=6,
                                                   output_size=output_size,
                                                   filter_size=3,
                                                   stride=2)
        return out


class TestTensorOutputSize5(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size5'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize6(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size6'

    def var_prefix(self):
        return "Var["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17, 17])
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize7(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size7'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = 17
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize8(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size8'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, 17]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


Z
deconv  
zchen0211 已提交
1148 1149
if __name__ == '__main__':
    unittest.main()