metrics.py 37.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fluid Metrics
"""
17

D
dzhwinter 已提交
18 19 20
import numpy as np
import copy

D
Dang Qingqing 已提交
21 22 23 24 25
from .layer_helper import LayerHelper
from .initializer import Constant
from . import unique_name
from .framework import Program, Variable, program_guard
from . import layers
26
from .layers import detection
D
Dang Qingqing 已提交
27

D
dzhwinter 已提交
28 29 30
__all__ = [
    'MetricBase',
    'CompositeMetric',
31 32
    'Precision',
    'Recall',
D
dzhwinter 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45
    'Accuracy',
    'ChunkEvaluator',
    'EditDistance',
    'DetectionMAP',
    'Auc',
]


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


def _is_number_(var):
P
peizhilin 已提交
46 47
    return isinstance(var, int) or isinstance(var, np.int64) or isinstance(
        var, float) or (isinstance(var, np.ndarray) and var.shape == (1, ))
D
dzhwinter 已提交
48 49 50 51 52 53 54 55


def _is_number_or_matrix_(var):
    return _is_number_(var) or isinstance(var, np.ndarray)


class MetricBase(object):
    """
56 57 58 59
    In many cases, we usually have to split the test data into mini-batches for evaluating
    deep neural networks, therefore we need to collect the evaluation results of each
    mini-batch and aggregate them into the final result. The paddle.fluid.metrics is
    designed for a convenient way of deep neural network evaluation.
D
dzhwinter 已提交
60

61
    The paddle.fluid.metrics contains serval different evaluation metrics
P
pkpk 已提交
62 63
    like precision and recall, and most of them have the following functions:

64
    1. take the prediction result and the corresponding labels of a mini-batch as input,
P
pkpk 已提交
65 66 67 68 69
    then compute the evaluation result for the input mini-batch.

    2. aggregate the existing evaluation results as the overall performance.

    The class Metric is the base class for all classes in paddle.fluid.metrics, it defines
T
tianshuo78520a 已提交
70
    the fundamental APIs for all metrics classes, including:
P
pkpk 已提交
71 72 73 74 75 76 77 78 79

    1. update(preds, labels): given the prediction results (preds) and the labels (labels)
    of some mini-batch, compute the evaluation result of that mini-batch, and memorize the
    evaluation result.

    2. eval(): aggregate all existing evaluation result in the memory, and return the overall
    performance across different mini-batches.

    3. reset(): empty the memory.
80

D
dzhwinter 已提交
81 82
    """

83
    def __init__(self, name):
P
pkpk 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97
        """
        The constructor of the metric class.

        Args:
            name(str): The name of metric instance. such as, "accuracy".
                  It can be used to distinguish different metric instances in a model.

        Returns:
            The constructed class instance.

        Return types:
            The MetricBase or its succeed classes

        """
D
dzhwinter 已提交
98 99 100 101 102 103 104
        self._name = str(name) if name != None else self.__class__.__name__

    def __str__(self):
        return self._name

    def reset(self):
        """
105 106
        reset function empties the evaluation memory for previous mini-batches.

P
pkpk 已提交
107 108 109 110 111 112 113 114 115
        Args:
            None

        Returns:
            None

        Return types:
            None

D
dzhwinter 已提交
116 117 118
        """
        states = {
            attr: value
119
            for attr, value in self.__dict__.items() if not attr.startswith("_")
D
dzhwinter 已提交
120
        }
121
        for attr, value in states.items():
D
dzhwinter 已提交
122 123 124 125 126 127 128 129 130 131
            if isinstance(value, int):
                setattr(self, attr, 0)
            elif isinstance(value, float):
                setattr(self, attr, .0)
            elif isinstance(value, (np.ndarray, np.generic)):
                setattr(self, attr, np.zeros_like(value))
            else:
                setattr(self, attr, None)

    def get_config(self):
132 133 134 135 136 137 138 139
        """
        Get the metric and current states.
        The states are the members who do not has "_" prefix.

        Args:
            None

        Returns:
T
tianshuo78520a 已提交
140
            a python dict, which contains the inner states of the metric instance
P
pkpk 已提交
141 142 143

        Return types:
            a python dict
144
        """
D
dzhwinter 已提交
145 146
        states = {
            attr: value
147
            for attr, value in self.__dict__.items() if not attr.startswith("_")
D
dzhwinter 已提交
148
        }
149
        config = {}
D
dzhwinter 已提交
150 151 152
        config.update({"name": self._name, "states": copy.deepcopy(states)})
        return config

153 154
    def update(self, preds, labels):
        """
P
pkpk 已提交
155
        Given the prediction results (preds) and the labels (labels)
156
        of some mini-batch, compute the evaluation result of that mini-batch,
P
pkpk 已提交
157
        and memorize the evaluation result. Please notice that the update function only
158
        memorizes the evaluation result but would not return the score. If you want to
P
pkpk 已提交
159
        get the evaluation result, please call eval() function.
160 161 162

        Args:
            preds(numpy.array): the predictions of current minibatch
P
pkpk 已提交
163 164 165 166 167 168
            labels(numpy.array): the labels of current minibatch.

        Returns:
            None

        Return types:
169
            None
P
pkpk 已提交
170

171 172 173
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
174 175

    def eval(self):
176
        """
P
pkpk 已提交
177 178 179 180 181
        Aggregate all existing evaluation results in the memory, and return the overall
        performance across different mini-batches.

        Args:
            None
182 183

        Returns:
P
pkpk 已提交
184 185 186
            The overall performance across different mini-batches.

        Return types:
187 188 189 190
            float|list(float)|numpy.array: the metrics via Python.
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
191 192 193 194


class CompositeMetric(MetricBase):
    """
195
    This op creates a container that contains the union of all the added metrics.
P
pkpk 已提交
196 197 198
    After the metrics added in, calling eval() method will compute all the contained metrics automatically.
    CAUTION: only metrics with the SAME argument list can be added in a CompositeMetric instance.

199
    Inherit from: `MetricBase <https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_cn/metrics_cn.html#paddle.fluid.metrics.MetricBase>`_
P
pkpk 已提交
200 201 202

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
203

204 205
    Examples:
        .. code-block:: python
206
            import paddle.fluid as fluid
P
pkpk 已提交
207 208 209 210 211 212 213 214 215 216 217 218
            import numpy as np
            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]
            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]
            preds = np.array(preds)
            labels = np.array(labels)
            comp = fluid.metrics.CompositeMetric()
            precision = fluid.metrics.Precision()
            recall = fluid.metrics.Recall()
            comp.add_metric(precision)
            comp.add_metric(recall)
219
            comp.update(preds=preds, labels=labels)
P
pkpk 已提交
220 221 222
            numpy_precision, numpy_recall = comp.eval()
            print("expect precision: %.2f, got %.2f" % ( 3. / 5, numpy_precision ) )
            print("expect recall: %.2f, got %.2f" % (3. / 4, numpy_recall ) )
D
dzhwinter 已提交
223 224
    """

225 226
    def __init__(self, name=None):
        super(CompositeMetric, self).__init__(name)
D
dzhwinter 已提交
227 228
        self._metrics = []

Q
qiaolongfei 已提交
229
    def add_metric(self, metric):
230
        """
231 232
        Add a new metric to container. Noted that the argument list
        of the added one should be consistent with existed ones.
233 234

        Args:
P
pkpk 已提交
235
            metric(MetricBase): a instance of MetricBase
236
        """
D
dzhwinter 已提交
237 238 239 240
        if not isinstance(metric, MetricBase):
            raise ValueError("SubMetric should be inherit from MetricBase.")
        self._metrics.append(metric)

241 242
    def update(self, preds, labels):
        """
P
pkpk 已提交
243
        Update the metrics of this container.
244 245

        Args:
P
pkpk 已提交
246
            preds(numpy.array): predicted results of current mini-batch, the shape and dtype of which should meet the requirements of the corresponded metric.
247
            labels(numpy.array): ground truth of current mini-batch, the shape and dtype of which should meet the requirements of the corresponded metric.
248 249
        """
        for m in self._metrics:
D
dzhwinter 已提交
250
            m.update(preds, labels)
251

D
dzhwinter 已提交
252
    def eval(self):
253
        """
P
pkpk 已提交
254
        Calculate the results of all metrics sequentially.
255 256

        Returns:
257
            list: results of all added metrics.
T
tianshuo78520a 已提交
258
            The shape and dtype of each result depend on the definition of its metric.
259
        """
D
dzhwinter 已提交
260 261 262 263 264 265
        ans = []
        for m in self._metrics:
            ans.append(m.eval())
        return ans


266 267 268
class Precision(MetricBase):
    """
    Precision (also called positive predictive value) is the fraction of
P
pkpk 已提交
269
    relevant instances among the retrieved instances. Refer to
270 271
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

T
tianshuo78520a 已提交
272
    Noted that this class manages the precision score only for binary classification task.
P
pkpk 已提交
273 274 275

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
276 277 278 279

    Examples:
        .. code-block:: python

280
            import paddle.fluid as fluid
P
pkpk 已提交
281 282
            import numpy as np

T
Tink_Y 已提交
283
            metric = fluid.metrics.Precision()
P
pkpk 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

            # generate the preds and labels

            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]

            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]

            preds = np.array(preds)
            labels = np.array(labels)

            metric.update(preds=preds, labels=labels)
            numpy_precision = metric.eval()

P
pkpk 已提交
299
            print("expect precision: %.2f and got %.2f" % ( 3.0 / 5.0, numpy_precision))
300 301 302 303 304 305 306 307
    """

    def __init__(self, name=None):
        super(Precision, self).__init__(name)
        self.tp = 0  # true positive
        self.fp = 0  # false positive

    def update(self, preds, labels):
P
pkpk 已提交
308 309 310 311
        """
        Update the precision based on the current mini-batch prediction results .

        Args:
312 313
            preds(numpy.ndarray): prediction results of current mini-batch,
                                the output of two-class sigmoid function.
P
pkpk 已提交
314
                                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
315 316
            labels(numpy.ndarray): ground truth (labels) of current mini-batch,
                                 the shape should keep the same as preds.
P
pkpk 已提交
317 318
                                 Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
319 320 321 322
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
323 324
        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")
G
Genieliu 已提交
325

326
        for i in range(sample_num):
327
            pred = preds[i]
328
            label = labels[i]
P
pkpk 已提交
329
            if pred == 1:
330 331 332 333 334 335
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def eval(self):
P
pkpk 已提交
336 337 338 339 340 341
        """
        Calculate the final precision.

        Returns:
            float: Results of the calculated Precision. Scalar output with float dtype.
        """
342 343 344 345 346 347 348 349 350 351
        ap = self.tp + self.fp
        return float(self.tp) / ap if ap != 0 else .0


class Recall(MetricBase):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

P
pkpk 已提交
352
    Refer to:
353 354
    https://en.wikipedia.org/wiki/Precision_and_recall

T
tianshuo78520a 已提交
355
    Noted that this class manages the recall score only for binary classification task.
P
pkpk 已提交
356 357 358

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
P
pkpk 已提交
359

360 361 362
    Examples:
        .. code-block:: python

363
            import paddle.fluid as fluid
P
pkpk 已提交
364 365
            import numpy as np

T
Tink_Y 已提交
366
            metric = fluid.metrics.Recall()
P
pkpk 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379

            # generate the preds and labels

            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]

            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]

            preds = np.array(preds)
            labels = np.array(labels)

            metric.update(preds=preds, labels=labels)
P
pkpk 已提交
380
            numpy_recall = metric.eval()
P
pkpk 已提交
381

P
pkpk 已提交
382
            print("expect recall: %.2f and got %.2f" % ( 3.0 / 4.0, numpy_recall))
383 384 385 386 387
    """

    def __init__(self, name=None):
        super(Recall, self).__init__(name)
        self.tp = 0  # true positive
T
tianshuo78520a 已提交
388
        self.fn = 0  # false negative
389 390

    def update(self, preds, labels):
P
pkpk 已提交
391 392 393 394
        """
        Update the recall based on the current mini-batch prediction results.

        Args:
395 396
            preds(numpy.array): prediction results of current mini-batch,
                              the output of two-class sigmoid function.
P
pkpk 已提交
397
                              Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
398 399
            labels(numpy.array): ground truth (labels) of current mini-batch,
                               the shape should keep the same as preds.
P
pkpk 已提交
400 401
                               Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
402 403 404 405
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
P
pkpk 已提交
406 407 408
        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

409
        for i in range(sample_num):
P
pkpk 已提交
410
            pred = preds[i]
411 412 413 414
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
P
pkpk 已提交
415
                else:
416 417 418
                    self.fn += 1

    def eval(self):
P
pkpk 已提交
419 420 421 422 423 424
        """
        Calculate the final recall.

        Returns:
            float: results of the calculated Recall. Scalar output with float dtype.
        """
425 426 427 428
        recall = self.tp + self.fn
        return float(self.tp) / recall if recall != 0 else .0


D
dzhwinter 已提交
429 430
class Accuracy(MetricBase):
    """
P
pkpk 已提交
431
    This interface is used to calculate the mean accuracy over multiple batches.
432
    Accuracy object has two state: value and weight. The definition of Accuracy is available at
433
    https://en.wikipedia.org/wiki/Accuracy_and_precision
D
dzhwinter 已提交
434 435

    Args:
P
pkpk 已提交
436
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
D
dzhwinter 已提交
437

438 439 440
    Examples:
        .. code-block:: python

441
            import paddle.fluid as fluid
P
pkpk 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            #suppose we have batch_size = 128
            batch_size=128
            accuracy_manager = fluid.metrics.Accuracy()

            #suppose the accuracy is 0.9 for the 1st batch
            batch1_acc = 0.9
            accuracy_manager.update(value = batch1_acc, weight = batch_size)
            print("expect accuracy: %.2f, get accuracy: %.2f" % (batch1_acc, accuracy_manager.eval()))

            #suppose the accuracy is 0.8 for the 2nd batch
            batch2_acc = 0.8

            accuracy_manager.update(value = batch2_acc, weight = batch_size)
            #the joint acc for batch1 and batch2 is (batch1_acc * batch_size + batch2_acc * batch_size) / batch_size / 2
            print("expect accuracy: %.2f, get accuracy: %.2f" % ((batch1_acc * batch_size + batch2_acc * batch_size) / batch_size / 2, accuracy_manager.eval()))

            #reset the accuracy_manager
            accuracy_manager.reset()
            #suppose the accuracy is 0.8 for the 3rd batch
            batch3_acc = 0.8
            accuracy_manager.update(value = batch3_acc, weight = batch_size)
            print("expect accuracy: %.2f, get accuracy: %.2f" % (batch3_acc, accuracy_manager.eval()))
D
dzhwinter 已提交
464 465 466 467 468 469 470 471
    """

    def __init__(self, name=None):
        super(Accuracy, self).__init__(name)
        self.value = .0
        self.weight = .0

    def update(self, value, weight):
472
        r"""
P
pkpk 已提交
473 474 475 476 477
        This function takes the minibatch states (value, weight) as input,
        to accumulate and update the corresponding status of the Accuracy object. The update method is as follows:

        .. math::
            \\\\ \\begin{array}{l}{\\text { self. value }+=\\text { value } * \\text { weight }} \\\\ {\\text { self. weight }+=\\text { weight }}\\end{array} \\\\
478 479 480

        Args:
            value(float|numpy.array): accuracy of one minibatch.
P
pkpk 已提交
481
            weight(int|float): minibatch size.
482
        """
D
dzhwinter 已提交
483 484 485 486 487
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
P
pkpk 已提交
488 489
        if _is_number_(weight) and weight < 0:
            raise ValueError("The 'weight' can not be negative")
D
dzhwinter 已提交
490 491 492 493
        self.value += value * weight
        self.weight += weight

    def eval(self):
P
pkpk 已提交
494
        """
P
pkpk 已提交
495 496
        This function returns the mean accuracy (float or numpy.array) for all accumulated minibatches.

497
        Returns:
P
pkpk 已提交
498 499
            float or numpy.array: mean accuracy for all accumulated minibatches.

P
pkpk 已提交
500
        """
D
dzhwinter 已提交
501
        if self.weight == 0:
502 503
            raise ValueError("There is no data in Accuracy Metrics. \
                Please check layers.accuracy output has added to Accuracy.")
D
dzhwinter 已提交
504 505 506
        return self.value / self.weight


507
class ChunkEvaluator(MetricBase):
D
dzhwinter 已提交
508 509 510 511
    """
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
    numbers.
512
    ChunkEvaluator has three states: num_infer_chunks, num_label_chunks and num_correct_chunks,
P
pkpk 已提交
513
    which correspond to the number of chunks, the number of labeled chunks, and the number of correctly identified chunks.
514
    For some basics of chunking, please refer to
P
pkpk 已提交
515
    `Chunking with Support Vector Machines <https://www.aclweb.org/anthology/N01-1025>`_ .
516 517 518
    ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.

P
pkpk 已提交
519 520 521
    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.

522 523 524
    Examples:
        .. code-block:: python

525
            import paddle.fluid as fluid
T
tianshuo78520a 已提交
526
            # init the chunk-level evaluation manager
527
            metric = fluid.metrics.ChunkEvaluator()
P
pkpk 已提交
528

T
tianshuo78520a 已提交
529
            # suppose the model predict 10 chucks, while 8 ones are correct and the ground truth has 9 chucks.
P
pkpk 已提交
530
            num_infer_chunks = 10
531
            num_label_chunks = 9
P
pkpk 已提交
532 533 534 535 536 537 538
            num_correct_chunks = 8

            metric.update(num_infer_chunks, num_label_chunks, num_correct_chunks)
            numpy_precision, numpy_recall, numpy_f1 = metric.eval()

            print("precision: %.2f, recall: %.2f, f1: %.2f" % (numpy_precision, numpy_recall, numpy_f1))

T
tianshuo78520a 已提交
539
            # the next batch, predicting 3 perfectly correct chucks.
P
pkpk 已提交
540 541 542 543 544 545 546 547 548
            num_infer_chunks = 3
            num_label_chunks = 3
            num_correct_chunks = 3

            metric.update(num_infer_chunks, num_label_chunks, num_correct_chunks)
            numpy_precision, numpy_recall, numpy_f1 = metric.eval()

            print("precision: %.2f, recall: %.2f, f1: %.2f" % (numpy_precision, numpy_recall, numpy_f1))

D
dzhwinter 已提交
549 550 551
    """

    def __init__(self, name=None):
T
update  
typhoonzero 已提交
552
        super(ChunkEvaluator, self).__init__(name)
D
dzhwinter 已提交
553 554 555 556 557
        self.num_infer_chunks = 0
        self.num_label_chunks = 0
        self.num_correct_chunks = 0

    def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
558
        r"""
P
pkpk 已提交
559 560
        This function takes (num_infer_chunks, num_label_chunks, num_correct_chunks) as input,
        to accumulate and update the corresponding status of the ChunkEvaluator object. The update method is as follows:
561 562

        .. math::
P
pkpk 已提交
563
                   \\\\ \\begin{array}{l}{\\text { self. num_infer_chunks }+=\\text { num_infer_chunks }} \\\\ {\\text { self. num_Label_chunks }+=\\text { num_label_chunks }} \\\\ {\\text { self. num_correct_chunks }+=\\text { num_correct_chunks }}\\end{array} \\\\
H
haowang101779990 已提交
564

565 566 567 568 569 570
        Args:
            num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
            num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
            num_correct_chunks(int|float|numpy.array): The number of chunks both in Inference and Label on the
                                                  given mini-batch.
        """
D
dzhwinter 已提交
571 572
        if not _is_number_or_matrix_(num_infer_chunks):
            raise ValueError(
573
                "The 'num_infer_chunks' must be a number(int) or a numpy ndarray."
D
dzhwinter 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587
            )
        if not _is_number_or_matrix_(num_label_chunks):
            raise ValueError(
                "The 'num_label_chunks' must be a number(int, float) or a numpy ndarray."
            )
        if not _is_number_or_matrix_(num_correct_chunks):
            raise ValueError(
                "The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray."
            )
        self.num_infer_chunks += num_infer_chunks
        self.num_label_chunks += num_label_chunks
        self.num_correct_chunks += num_correct_chunks

    def eval(self):
P
pkpk 已提交
588 589 590
        """
        This function returns the mean precision, recall and f1 score for all accumulated minibatches.

591
        Returns:
P
pkpk 已提交
592 593 594
            float: mean precision, recall and f1 score.

        """
D
dzhwinter 已提交
595 596 597 598 599 600 601 602 603 604 605 606
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        return precision, recall, f1_score


class EditDistance(MetricBase):
    """
P
pkpk 已提交
607
    This API is for the management of edit distances.
608 609 610
    Editing distance is a method to quantify the degree of dissimilarity
    between two strings, such as words, by calculating the minimum editing
    operand (add, delete or replace) required to convert one string into another.
P
pkpk 已提交
611
    Refer to https://en.wikipedia.org/wiki/Edit_distance.
D
dzhwinter 已提交
612 613

    Args:
P
pkpk 已提交
614
        name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
D
dzhwinter 已提交
615

616 617 618
    Examples:
        .. code-block:: python

619
            import paddle.fluid as fluid
P
pkpk 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
            import numpy as np

            # suppose that batch_size is 128
            batch_size = 128

            # init the edit distance manager
            distance_evaluator = fluid.metrics.EditDistance("EditDistance")

            # generate the edit distance across 128 sequence pairs, the max distance is 10 here
            edit_distances_batch0 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch0 = batch_size

            distance_evaluator.update(edit_distances_batch0, seq_num_batch0)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch0 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))
D
dzhwinter 已提交
635

P
pkpk 已提交
636 637
            edit_distances_batch1 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch1 = batch_size
T
Tink_Y 已提交
638

P
pkpk 已提交
639 640 641 642 643 644 645 646 647 648 649 650
            distance_evaluator.update(edit_distances_batch1, seq_num_batch1)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch0 and batch1 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))

            distance_evaluator.reset()

            edit_distances_batch2 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch2 = batch_size

            distance_evaluator.update(edit_distances_batch2, seq_num_batch2)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch2 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))
D
dzhwinter 已提交
651 652 653 654 655 656 657 658 659 660

    """

    def __init__(self, name):
        super(EditDistance, self).__init__(name)
        self.total_distance = .0
        self.seq_num = 0
        self.instance_error = 0

    def update(self, distances, seq_num):
P
pkpk 已提交
661 662 663 664
        """
        Update the overall edit distance

        Args:
P
pkpk 已提交
665 666
            distances(numpy.array): a (batch_size, 1) numpy.array, each element represents the edit distance between two sequences.
            seq_num(int|float): standing for the number of sequence pairs.
P
pkpk 已提交
667
        """
D
dzhwinter 已提交
668 669 670 671 672 673 674 675 676 677
        if not _is_numpy_(distances):
            raise ValueError("The 'distances' must be a numpy ndarray.")
        if not _is_number_(seq_num):
            raise ValueError("The 'seq_num' must be a number(int, float).")
        seq_right_count = np.sum(distances == 0)
        total_distance = np.sum(distances)
        self.seq_num += seq_num
        self.instance_error += seq_num - seq_right_count
        self.total_distance += total_distance

Q
qiaolongfei 已提交
678
    def eval(self):
P
pkpk 已提交
679 680 681 682 683
        """
        Return two floats:
        avg_distance: the average distance for all sequence pairs updated using the update function.
        avg_instance_error: the ratio of sequence pairs whose edit distance is not zero.
        """
D
dzhwinter 已提交
684 685 686 687 688
        if self.seq_num == 0:
            raise ValueError(
                "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
            )
        avg_distance = self.total_distance / self.seq_num
S
sneaxiy 已提交
689
        avg_instance_error = self.instance_error / float(self.seq_num)
D
dzhwinter 已提交
690 691 692 693 694
        return avg_distance, avg_instance_error


class Auc(MetricBase):
    """
P
pkpk 已提交
695
    The auc metric is for binary classification.
P
pkpk 已提交
696
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
P
pkpk 已提交
697
    Please notice that the auc metric is implemented with python, which may be a little bit slow.
D
dzhwinter 已提交
698 699 700
    If you concern the speed, please use the fluid.layers.auc instead.

    The `auc` function creates four local variables, `true_positives`,
701 702 703 704 705 706
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.
D
dzhwinter 已提交
707 708

    Args:
P
pkpk 已提交
709 710
        name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
        curve (str): Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve.
D
dzhwinter 已提交
711 712

    "NOTE: only implement the ROC curve type via Python now."
713 714 715 716

    Examples:
        .. code-block:: python

717
            import paddle.fluid as fluid
P
pkpk 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            import numpy as np
            # init the auc metric
            auc_metric = fluid.metrics.Auc("ROC")

            # suppose that batch_size is 128
            batch_num = 100
            batch_size = 128

            for batch_id in range(batch_num):

                class0_preds = np.random.random(size = (batch_size, 1))
                class1_preds = 1 - class0_preds

                preds = np.concatenate((class0_preds, class1_preds), axis=1)

                labels = np.random.randint(2, size = (batch_size, 1))
                auc_metric.update(preds = preds, labels = labels)

                # shall be some score closing to 0.5 as the preds are randomly assigned
                print("auc for iteration %d is %.2f" % (batch_id, auc_metric.eval()))
D
dzhwinter 已提交
738 739
    """

T
tangwei12 已提交
740
    def __init__(self, name, curve='ROC', num_thresholds=4095):
Q
fix auc  
qiaolongfei 已提交
741
        super(Auc, self).__init__(name=name)
D
dzhwinter 已提交
742 743
        self._curve = curve
        self._num_thresholds = num_thresholds
T
tangwei12 已提交
744 745 746 747

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = [0] * _num_pred_buckets
        self._stat_neg = [0] * _num_pred_buckets
D
dzhwinter 已提交
748

Q
qiaolongfei 已提交
749
    def update(self, preds, labels):
P
pkpk 已提交
750
        """
P
pkpk 已提交
751
        Update the auc curve with the given predictions and labels.
P
pkpk 已提交
752 753

        Args:
P
pkpk 已提交
754 755
             preds (numpy.array): an numpy array in the shape of (batch_size, 2), preds[i][j] denotes the probability of classifying the instance i into the class j.
             labels (numpy.array): an numpy array in the shape of (batch_size, 1), labels[i] is either o or 1, representing the label of the instance i.
P
pkpk 已提交
756
        """
D
dzhwinter 已提交
757 758
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
Q
qiaolongfei 已提交
759
        if not _is_numpy_(preds):
D
dzhwinter 已提交
760 761
            raise ValueError("The 'predictions' must be a numpy ndarray.")

T
tangwei12 已提交
762 763 764 765 766 767 768 769 770 771 772 773
        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0
D
dzhwinter 已提交
774 775

    def eval(self):
P
pkpk 已提交
776 777
        """
        Return the area (a float score) under auc curve
P
pkpk 已提交
778 779 780

        Return:
            float: the area under auc curve
P
pkpk 已提交
781
        """
T
tangwei12 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
            auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
                                       tot_pos_prev)
            idx -= 1

        return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
797 798 799 800 801 802 803


class DetectionMAP(object):
    """
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
H
haowang101779990 已提交
804

805
    1. calculate the true positive and false positive according to the input
H
haowang101779990 已提交
806
       of detection and labels.
807
    2. calculate mAP value, support two versions: '11 point' and 'integral'.
808 809
       11point: the 11-point interpolated average precision.
       integral: the natural integral of the precision-recall curve.
810 811

    Please get more information from the following articles:
H
haowang101779990 已提交
812

813
      https://sanchom.wordpress.com/tag/average-precision/
H
haowang101779990 已提交
814

815 816 817
      https://arxiv.org/abs/1512.02325

    Args:
818
        input (Variable): LoDTensor, The detection results, which is a LoDTensor with shape
819
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
820 821 822 823
            The data type is float32 or float64.
        gt_label (Variable): LoDTensor, The ground truth label index, which is a LoDTensor
            with shape [N, 1].The data type is float32 or float64.
        gt_box (Variable): LoDTensor, The ground truth bounding box (bbox), which is a
824
            LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax].
825 826
            The data type is float32 or float64.
        gt_difficult (Variable|None): LoDTensor, Whether this ground truth is a difficult
827
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
828 829
            it means all the ground truth labels are not difficult bbox.The
            data type is int.
830 831 832
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
翟飞跃 已提交
833
            considered, 0 by default.
834
        overlap_threshold (float): The threshold for deciding true/false
翟飞跃 已提交
835
            positive, 0.5 by default.
836
        evaluate_difficult (bool): Whether to consider difficult ground truth
翟飞跃 已提交
837
            for evaluation, True by default. This argument does not work when
838
            gt_difficult is None.
839
        ap_version (str): The average precision calculation ways, it must be
840 841 842 843 844 845
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.

    Examples:
        .. code-block:: python

846
            import paddle.fluid as fluid
847

848 849 850
            import paddle
            paddle.enable_static()

851
            batch_size = None # can be any size
P
pkpk 已提交
852 853 854
            image_boxs_num = 10
            bounding_bboxes_num = 21

855 856
            pb = fluid.data(name='prior_box', shape=[image_boxs_num, 4],
                       dtype='float32')
P
pkpk 已提交
857

858 859
            pbv = fluid.data(name='prior_box_var', shape=[image_boxs_num, 4],
                         dtype='float32')
P
pkpk 已提交
860

861 862
            loc = fluid.data(name='target_box', shape=[batch_size, bounding_bboxes_num, 4],
                        dtype='float32')
P
pkpk 已提交
863

864 865
            scores = fluid.data(name='scores', shape=[batch_size, bounding_bboxes_num, image_boxs_num],
                            dtype='float32')
P
pkpk 已提交
866 867 868 869

            nmsed_outs = fluid.layers.detection_output(scores=scores,
                loc=loc, prior_box=pb, prior_box_var=pbv)

870 871 872
            gt_box = fluid.data(name="gt_box", shape=[batch_size, 4], dtype="float32")
            gt_label = fluid.data(name="gt_label", shape=[batch_size, 1], dtype="float32")
            difficult = fluid.data(name="difficult", shape=[batch_size, 1], dtype="float32")
P
pkpk 已提交
873 874 875 876 877

            exe = fluid.Executor(fluid.CUDAPlace(0))
            map_evaluator = fluid.metrics.DetectionMAP(nmsed_outs, gt_label, gt_box, difficult, class_num = 3)

            cur_map, accum_map = map_evaluator.get_map_var()
H
haowang101779990 已提交
878

879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
                 gt_difficult=None,
                 class_num=None,
                 background_label=0,
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):

        self.helper = LayerHelper('map_eval')
        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)

        # calculate mean average precision (mAP) of current mini-batch
902 903 904 905 906 907 908
        map = detection.detection_map(input,
                                      label,
                                      class_num,
                                      background_label,
                                      overlap_threshold=overlap_threshold,
                                      evaluate_difficult=evaluate_difficult,
                                      ap_version=ap_version)
909 910 911

        states = []
        states.append(
912 913 914
            self._create_state(dtype='int32',
                               shape=None,
                               suffix='accum_pos_count'))
915
        states.append(
916 917 918
            self._create_state(dtype='float32',
                               shape=None,
                               suffix='accum_true_pos'))
919
        states.append(
920 921 922
            self._create_state(dtype='float32',
                               shape=None,
                               suffix='accum_false_pos'))
923
        var = self._create_state(dtype='int32', shape=[1], suffix='has_state')
924 925
        self.helper.set_variable_initializer(var,
                                             initializer=Constant(value=int(0)))
926 927 928
        self.has_state = var

        # calculate accumulative mAP
929
        accum_map = detection.detection_map(
930 931 932 933 934 935 936 937 938 939 940
            input,
            label,
            class_num,
            background_label,
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=states,
            out_states=states,
            ap_version=ap_version)

941 942 943 944
        layers.fill_constant(shape=self.has_state.shape,
                             value=1,
                             dtype=self.has_state.dtype,
                             out=self.has_state)
945 946 947 948 949 950 951 952 953 954 955 956 957

        self.cur_map = map
        self.accum_map = accum_map

    def _create_state(self, suffix, dtype, shape):
        """
        Create state variable.
        Args:
            suffix(str): the state suffix.
            dtype(str|core.VarDesc.VarType): the state data type
            shape(tuple|list): the shape of state
        Returns: State variable
        """
958 959 960 961 962
        state = self.helper.create_variable(name="_".join(
            [unique_name.generate(self.helper.name), suffix]),
                                            persistable=True,
                                            dtype=dtype,
                                            shape=shape)
963 964 965 966 967 968 969 970 971 972 973
        return state

    def get_map_var(self):
        """
        Returns: mAP variable of current mini-batch and
            accumulative mAP variable cross mini-batches.
        """
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        """
D
Dang Qingqing 已提交
974
        Reset metric states at the begin of each pass/user specified batch.
975
        Args:
D
Dang Qingqing 已提交
976
            executor(Executor): a executor for executing
977 978 979 980 981 982 983
                the reset_program.
            reset_program(Program|None): a single Program for reset process.
                If None, will create a Program.
        """

        def _clone_var_(block, var):
            assert isinstance(var, Variable)
984 985 986 987 988 989
            return block.create_var(name=var.name,
                                    shape=var.shape,
                                    dtype=var.dtype,
                                    type=var.type,
                                    lod_level=var.lod_level,
                                    persistable=var.persistable)
990 991 992 993 994

        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
995 996 997 998
            layers.fill_constant(shape=var.shape,
                                 value=0,
                                 dtype=var.dtype,
                                 out=var)
999
        executor.run(reset_program)