metrics.py 13.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fluid Metrics

The metrics are accomplished via Python natively. 
"""
import numpy as np
import copy
import warnings

__all__ = [
    'MetricBase',
    'CompositeMetric',
    'Accuracy',
    'ChunkEvaluator',
    'EditDistance',
    'DetectionMAP',
    'Auc',
]


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


def _is_number_(var):
    return isinstance(var, int) or isinstance(var, float) or (isinstance(
        var, np.ndarray) and var.shape == (1, ))


def _is_number_or_matrix_(var):
    return _is_number_(var) or isinstance(var, np.ndarray)


class MetricBase(object):
    """
    Base Class for all evaluators

    Args:
        name(str): The name of evaluator. such as, "accuracy". Used for generate
            temporary variable name.
    Interface:
        Note(*) : the states is the attributes who not has _ prefix.

        get_config(): print current states and configuration
        reset(): clear the states. If the Metrics states type is not (int, float, np.ndarray),
                Please override this method.
        update(): update states at every minibatch
        eval(): get metric evaluation in numpy type.
    """

    def __init__(self, name, **kwargs):
        self._name = str(name) if name != None else self.__class__.__name__
        self._kwargs = kwargs if kwargs != None else dict()
        self.reset()

    def __str__(self):
        return self._name

    def reset(self):
        """
        states is the attributes who not has _ prefix.
        reset the states of metrics.
        """
        states = {
            attr: value
            for attr, value in self.__dict__.iteritems()
            if not attr.startswith("_")
        }
        for attr, value in states.iteritems():
            if isinstance(value, int):
                setattr(self, attr, 0)
            elif isinstance(value, float):
                setattr(self, attr, .0)
            elif isinstance(value, (np.ndarray, np.generic)):
                setattr(self, attr, np.zeros_like(value))
            else:
                setattr(self, attr, None)

    def get_config(self):
        states = {
            attr: value
            for attr, value in self.__dict__.iteritems()
            if not attr.startswith("_")
        }
        config = copy.deepcopy(self._kwargs)
        config.update({"name": self._name, "states": copy.deepcopy(states)})
        return config

    def update(self):
        raise NotImplementedError()

    def eval(self):
        raise NotImplementedError()


class CompositeMetric(MetricBase):
    """
    Compute multiple metrics in each minibatch.
    for example, merge F1, accuracy, recall into one Metric.
    """

    def __init__(self, name=None, **kwargs):
        super(CompositeMetric, self).__init__(name, kwargs)
        self._metrics = []

    def add_metric(self, metric):
        if not isinstance(metric, MetricBase):
            raise ValueError("SubMetric should be inherit from MetricBase.")
        self._metrics.append(metric)

    def eval(self):
        ans = []
        for m in self._metrics:
            ans.append(m.eval())
        return ans


class Accuracy(MetricBase):
    """
    Accumulate the accuracy from minibatches and compute the average accuracy
    for every pass.

    Args:
       name: the metrics name

    Example:
        minibatch_accuracy = fluid.layers.accuracy(pred, label)
        accuracy_evaluator = fluid.metrics.Accuracy()
        for epoch in PASS_NUM:
            accuracy_evaluator.reset()
            for data in batches:
                loss = exe.run(fetch_list=[cost, minibatch_accuracy])
            accuracy_evaluator.update(value=minibatch_accuracy, weight=batches)
            accuracy = accuracy_evaluator.eval()
    """

    def __init__(self, name=None):
        super(Accuracy, self).__init__(name)
        self.value = .0
        self.weight = .0

    def update(self, value, weight):
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
        self.value += value * weight
        self.weight += weight

    def eval(self):
        if self.weight == 0:
            raise ValueError(
                "There is no data in Accuracy Metrics. Please check layers.accuracy output has added to Accuracy."
            )
        return self.value / self.weight


172
class ChunkEvaluator(MetricBase):
D
dzhwinter 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    """
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
    numbers.
    """

    def __init__(self, name=None):
        super(ChunkEvalutor, self).__init__(name)
        self.num_infer_chunks = 0
        self.num_label_chunks = 0
        self.num_correct_chunks = 0

    def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
        if not _is_number_or_matrix_(num_infer_chunks):
            raise ValueError(
                "The 'num_infer_chunks' must be a number(int, float) or a numpy ndarray."
            )
        if not _is_number_or_matrix_(num_label_chunks):
            raise ValueError(
                "The 'num_label_chunks' must be a number(int, float) or a numpy ndarray."
            )
        if not _is_number_or_matrix_(num_correct_chunks):
            raise ValueError(
                "The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray."
            )
        self.num_infer_chunks += num_infer_chunks
        self.num_label_chunks += num_label_chunks
        self.num_correct_chunks += num_correct_chunks

    def eval(self):
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        return precision, recall, f1_score


class EditDistance(MetricBase):
    """
    Accumulate edit distance sum and sequence number from mini-batches and
    compute the average edit_distance and instance error of all batches.

    Args:
        name: the metrics name

    Example:
        edit_distance_metrics = fluid.layers.edit_distance(input, label)
        distance_evaluator = fluid.metrics.EditDistance()
        for epoch in PASS_NUM:
            distance_evaluator.reset()
            for data in batches:
                loss = exe.run(fetch_list=[cost] + list(edit_distance_metrics))
            distance_evaluator.update(*edit_distance_metrics)
            distance, instance_error = distance_evaluator.eval()

        In the above example:
        'distance' is the average of the edit distance in a pass.
        'instance_error' is the instance error rate in a pass.

    """

    def __init__(self, name):
        super(EditDistance, self).__init__(name)
        self.total_distance = .0
        self.seq_num = 0
        self.instance_error = 0

    def update(self, distances, seq_num):
        if not _is_numpy_(distances):
            raise ValueError("The 'distances' must be a numpy ndarray.")
        if not _is_number_(seq_num):
            raise ValueError("The 'seq_num' must be a number(int, float).")
        seq_right_count = np.sum(distances == 0)
        total_distance = np.sum(distances)
        self.seq_num += seq_num
        self.instance_error += seq_num - seq_right_count
        self.total_distance += total_distance

    def eval():
        if self.seq_num == 0:
            raise ValueError(
                "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
            )
        avg_distance = self.total_distance / self.seq_num
        avg_instance_error = self.instance_error / self.seq_num
        return avg_distance, avg_instance_error


class DetectionMAP(MetricBase):
    """
    Calculate the detection mean average precision (mAP).

    TODO (Dang Qingqing): update the following doc.
    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325
    """

    def __init__(self, name=None):
        super(DetectionMAP, self).__init__(name)
        # the current map value
        self.value = .0

    def update(self, value, weight):
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
        self.value += value
        self.weight += weight

    def eval(self):
        if self.weight == 0:
            raise ValueError(
                "There is no data in DetectionMAP Metrics. "
                "Please check layers.detection_map output has added to DetectionMAP."
            )
        return self.value / self.weight


class Auc(MetricBase):
    """
    Auc Metrics which adapts to binary classification.
    Need to note that auc metrics compute the value via Python natively.
    If you concern the speed, please use the fluid.layers.auc instead.

    The `auc` function creates four local variables, `true_positives`,
      `true_negatives`, `false_positives` and `false_negatives` that are used to
      compute the AUC. To discretize the AUC curve, a linearly spaced set of
      thresholds is used to compute pairs of recall and precision values. The area
      under the ROC-curve is therefore computed using the height of the recall
      values by the false positive rate, while the area under the PR-curve is the
      computed using the height of the precision values by the recall.

    Args:
        name: metric name
        curve: Specifies the name of the curve to be computed, 'ROC' [default] or
          'PR' for the Precision-Recall-curve.
        num_thresholds: The number of thresholds to use when discretizing the roc
            curve.

    "NOTE: only implement the ROC curve type via Python now."
    """

    def __init__(self, name, curve='ROC', num_thresholds=200):
        super(MetricBase, self).__init__(name, curve, num_thresholds)
        self._curve = curve
        self._num_thresholds = num_thresholds
        self._epsilon = 1e-6
        self.tp_list = np.ndarray((num_thresholds, ))
        self.fn_list = np.ndarray((num_thresholds, ))
        self.tn_list = np.ndarray((num_thresholds, ))
        self.fp_list = np.ndarray((num_thresholds, ))

    def update(self, labels, predictions, axis=1):
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
        if not _is_numpy_(predictions):
            raise ValueError("The 'predictions' must be a numpy ndarray.")

        kepsilon = 1e-7  # to account for floating point imprecisions
        thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
                      for i in range(num_thresholds - 2)]
        thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]

        # caculate TP, FN, TN, FP count
        for idx_thresh, thresh in enumerate(thresholds):
            tp, fn, tn, fp = 0, 0, 0, 0
            for i, lbl in enumerate(labels):
                if lbl:
                    if predictions[i, 0] >= thresh:
                        tp += 1
                    else:
                        fn += 1
                else:
                    if predictions[i, 0] >= thresh:
                        fp += 1
                    else:
                        tn += 1
            tp_list[idx_thresh] += tp
            fn_list[idx_thresh] += fn
            tn_list[idx_thresh] += tn
            fp_list[idx_thresh] += fp

    def eval(self):
        epsilon = self._epsilon
        num_thresholds = self._num_thresholds
        tpr = (tp_list.astype("float32") + epsilon) / (
            tp_list + fn_list + epsilon)
        fpr = fp_list.astype("float32") / (fp_list + tn_list + epsilon)
        rec = (tp_list.astype("float32") + epsilon) / (
            tp_list + fp_list + epsilon)

        x = fpr[:num_thresholds - 1] - fpr[1:]
        y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0
        auc_value = np.sum(x * y)
        return auc_value