# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math from .sampler import Sampler, SequenceSampler, RandomSampler from .dataset import Dataset, IterableDataset __all__ = ["BatchSampler", "DistributedBatchSampler"] class BatchSampler(Sampler): """ A base implement of batch sampler used by `paddle.io.DataLoader` which yield mini-batch indices(a list/tuple with length as mini-batch size and holds sample indices) iterably. Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should implement following methods: :code:`__iter__`: return mini-batch indices iterably. :code:`__len__`: get mini-batch number in an epoch. Args: dataset(Dataset): this could be a :code:`paddle.io.Dataset` implement or other python object which implemented :code:`__len__` for BatchSampler to get indices as the range of :attr:`dataset` length. Default None. sampler (Sampler): this could be a :code:`paddle.io.Dataset` instance which implemented :code:`__iter__` to yield sample indices. :attr:`sampler` and :attr:`dataset` can not be set in the same time. If :attr:`sampler` is set, :attr:`shuffle` should not be set. Default None. shuffle(bool): whether to shuffle indices order before genrating batch indices. Default False. batch_size(int): sample indice number in a mini-batch indices. drop_last(bool): whether drop the last incomplete batch dataset size is not divisible by the batch size. Default False Returns: BatchSampler: an iterable object for indices iterating Examples: .. code-block:: python from paddle.io import RandomSampler, BatchSampler, Dataset # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples bs = BatchSampler(dataset=RandomDataset(100), shuffle=False, batch_size=16, drop_last=False) for batch_indices in bs: print(batch_indices) # init with sampler sampler = RandomSampler(RandomDataset(100)) bs = BatchSampler(sampler=sampler, batch_size=8, drop_last=True) for batch_indices in bs: print(batch_indices) see `paddle.io.DataLoader` """ def __init__(self, dataset=None, sampler=None, shuffle=False, batch_size=1, drop_last=False): if dataset is None: assert sampler is not None, \ "either dataset or sampler should be set" assert isinstance(sampler, Sampler), \ "sampler should be a paddle.io.Sampler, but got {}".format(type(sampler)) assert not shuffle, "shuffle should be False when sampler is set" self.sampler = sampler else: assert not isinstance(dataset, IterableDataset), \ "dataset should not be a paddle.io.IterableDataset" assert sampler is None, \ "should not set both dataset and sampler" assert isinstance(shuffle, bool), \ "shuffle should be a boolean value, but got {}".format(type(shuffle)) if shuffle: self.sampler = RandomSampler(dataset) else: self.sampler = SequenceSampler(dataset) assert isinstance(batch_size, int) and batch_size > 0, \ "batch_size should be a positive integer, but got {}".format(batch_size) self.batch_size = batch_size assert isinstance(drop_last, bool), \ "drop_last should be a boolean value, but got {}".format(type(drop_last)) self.drop_last = drop_last def __iter__(self): batch_indices = [] for idx in self.sampler: batch_indices.append(idx) if len(batch_indices) == self.batch_size: yield batch_indices batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices def __len__(self): num_samples = len(self.sampler) num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size class _InfiniteIterableSampler(object): def __init__(self, dataset, batch_size=1): assert isinstance( dataset, IterableDataset ), "dataset should be an instance of paddle.io.IterableDataset" self.dataset = dataset self.batch_size = batch_size def __iter__(self): while True: yield [None] * self.batch_size class DistributedBatchSampler(BatchSampler): """Sampler that restricts data loading to a subset of the dataset. In such case, each process can pass a DistributedBatchSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Args: dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement or other python object which implemented `__len__` for BatchSampler to get sample number of data source. batch_size(int): sample indice number in a mini-batch indices. num_replicas(int, optional): porcess number in distributed training. If :attr:`num_replicas` is None, :attr:`num_replicas` will be retrieved from :code:`paddle.distributed.ParallenEnv`. Default None. rank(int, optional): the rank of the current process among :attr:`num_replicas` processes. If :attr:`rank` is None, :attr:`rank` is retrieved from :code:`paddle.distributed.ParallenEnv`. Default None. shuffle(bool): whther to shuffle indices order before genrating batch indices. Default False. drop_last(bool): whether drop the last incomplete batch dataset size is not divisible by the batch size. Default False Examples: .. code-block:: python import numpy as np from paddle.io import Dataset, DistributedBatchSampler # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples dataset = RandomDataset(100) sampler = DistributedBatchSampler(dataset, batch_size=64) for data in sampler: # do something break """ def __init__(self, dataset, batch_size, num_replicas=None, rank=None, shuffle=False, drop_last=False): self.dataset = dataset assert isinstance(batch_size, int) and batch_size > 0, \ "batch_size should be a positive integer" self.batch_size = batch_size assert isinstance(shuffle, bool), \ "shuffle should be a boolean value" self.shuffle = shuffle assert isinstance(drop_last, bool), \ "drop_last should be a boolean number" from paddle.fluid.dygraph.parallel import ParallelEnv if num_replicas is not None: assert isinstance(num_replicas, int) and num_replicas > 0, \ "num_replicas should be a positive integer" self.nranks = num_replicas else: self.nranks = ParallelEnv().nranks if rank is not None: assert isinstance(rank, int) and rank >= 0, \ "rank should be a non-negative integer" self.local_rank = rank else: self.local_rank = ParallelEnv().local_rank self.drop_last = drop_last self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks)) self.total_size = self.num_samples * self.nranks def __iter__(self): num_samples = len(self.dataset) indices = np.arange(num_samples).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size if self.shuffle: np.random.RandomState(self.epoch).shuffle(indices) self.epoch += 1 # subsample def _get_indices_by_batch_size(indices): subsampled_indices = [] last_batch_size = self.total_size % (self.batch_size * self.nranks) assert last_batch_size % self.nranks == 0 last_local_batch_size = last_batch_size // self.nranks for i in range(self.local_rank * self.batch_size, len(indices) - last_batch_size, self.batch_size * self.nranks): subsampled_indices.extend(indices[i:i + self.batch_size]) indices = indices[len(indices) - last_batch_size:] subsampled_indices.extend( indices[self.local_rank * last_local_batch_size:(self.local_rank + 1) * last_local_batch_size]) return subsampled_indices if self.nranks > 1: indices = _get_indices_by_batch_size(indices) assert len(indices) == self.num_samples _sample_iter = iter(indices) batch_indices = [] for idx in _sample_iter: batch_indices.append(idx) if len(batch_indices) == self.batch_size: yield batch_indices batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices def __len__(self): num_samples = self.num_samples num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size def set_epoch(self, epoch): """ Sets the epoch number. When :attr:`shuffle=True`, this number is used as seeds of random numbers. By default, users may not set this, all replicas (workers) use a different random ordering for each epoch. If set same number at each epoch, this sampler will yield the same ordering at all epoches. Arguments: epoch (int): Epoch number. Examples: .. code-block:: python import numpy as np from paddle.io import Dataset, DistributedBatchSampler # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples dataset = RandomDataset(100) sampler = DistributedBatchSampler(dataset, batch_size=64) for epoch in range(10): sampler.set_epoch(epoch) """ self.epoch = epoch