nn.py 16.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
25
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
M
minqiyang 已提交
26 27


X
Xin Pan 已提交
28
class Conv2D(layers.Layer):
M
minqiyang 已提交
29
    def __init__(self,
X
Xin Pan 已提交
30
                 name_scope,
M
minqiyang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
44
        super(Conv2D, self).__init__(name_scope)
M
minqiyang 已提交
45 46 47 48
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
49
        self._act = act
M
minqiyang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

74 75
        self._filter_param = self.create_parameter(
            attr=param_attr,
M
minqiyang 已提交
76 77 78 79 80
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
81
            self.create_variable(
M
minqiyang 已提交
82 83 84
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
85
            self.create_variable(
M
minqiyang 已提交
86 87 88
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
89
            self.create_variable(
M
minqiyang 已提交
90 91 92 93
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

94 95
        self._bias_param = self.create_parameter(
            attr=bias_attr,
M
minqiyang 已提交
96
            shape=[num_filters],
M
minqiyang 已提交
97 98
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
99 100

    def forward(self, input):
M
minqiyang 已提交
101 102 103
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
104 105 106 107 108 109
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
110
            outputs={"Output": pre_bias},
M
minqiyang 已提交
111 112 113 114
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
115
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
116 117 118 119
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
120 121
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
122

M
minqiyang 已提交
123 124 125 126 127 128 129
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
130
        # Currently, we don't support inplace in imperative mode
131
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
132 133


X
Xin Pan 已提交
134
class Pool2D(layers.Layer):
M
minqiyang 已提交
135
    def __init__(self,
X
Xin Pan 已提交
136
                 name_scope,
M
minqiyang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
159
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
173 174
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
175 176 177
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
178
            outputs={"Out": pool_out},
M
minqiyang 已提交
179 180 181 182 183 184 185 186 187 188 189
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
190
        return pool_out
M
minqiyang 已提交
191 192


X
Xin Pan 已提交
193
class FC(layers.Layer):
M
minqiyang 已提交
194
    def __init__(self,
X
Xin Pan 已提交
195
                 name_scope,
M
minqiyang 已提交
196
                 size,
M
minqiyang 已提交
197
                 param_attr=None,
M
minqiyang 已提交
198
                 bias_attr=None,
M
minqiyang 已提交
199
                 num_flatten_dims=1,
X
Xin Pan 已提交
200
                 dtype=core.VarDesc.VarType.FP32,
X
Xin Pan 已提交
201 202
                 act=None):
        super(FC, self).__init__(name_scope)
M
minqiyang 已提交
203

M
minqiyang 已提交
204
        self._size = size
M
minqiyang 已提交
205 206
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
207
        self._param_attr = param_attr
208
        self._bias_attr = bias_attr
209
        self._act = act
M
minqiyang 已提交
210 211 212 213 214

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
215
        ] + [self._size]
216 217
        self._w = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
218 219 220
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
221

222
        if self._bias_attr:
223
            size = list([self._size])
224
            self._b = self.create_parameter(
225
                attr=self._bias_attr,
226 227 228 229 230
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
231 232

    def forward(self, input):
M
minqiyang 已提交
233
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
234 235 236 237
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
238
            outputs={"Out": tmp},
M
minqiyang 已提交
239 240 241 242 243
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
244
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
245 246
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
247
            inputs={"X": [tmp]},
M
minqiyang 已提交
248
            outputs={"Out": pre_bias},
M
minqiyang 已提交
249
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
250

251 252 253 254 255 256 257 258 259 260 261
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
262
        # Currently, we don't support inplace in imperative mode
263
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
264 265 266 267


class BatchNorm(layers.Layer):
    def __init__(self,
X
Xin Pan 已提交
268
                 name_scope,
M
minqiyang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
X
Xin Pan 已提交
284
        super(BatchNorm, self).__init__(name_scope)
285 286 287
        self._param_attr = param_attr
        self._param_attr = bias_attr
        self._act = act
M
minqiyang 已提交
288 289 290 291 292 293 294 295 296 297 298

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
299 300
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
301 302 303
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
304
        if use_global_stats and self._param_attr.learning_rate == 0.:
M
minqiyang 已提交
305
            self._scale._stop_gradient = True
M
minqiyang 已提交
306

307 308
        self._bias = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
309 310 311
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
312
        if use_global_stats and self._param_attr.learning_rate == 0.:
M
minqiyang 已提交
313
            self._bias._stop_gradient = True
M
minqiyang 已提交
314

315
        self._mean = self.create_parameter(
M
minqiyang 已提交
316 317 318 319 320 321 322
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
323
        self._mean._stop_gradient = True
M
minqiyang 已提交
324

325
        self._variance = self.create_parameter(
M
minqiyang 已提交
326 327 328 329 330 331 332
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
333
        self._variance._stop_gradient = True
M
minqiyang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
353
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
354
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
355
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
356
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
357
            self._dtype)
M
minqiyang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
384
        # Currently, we don't support inplace in imperative mode
385
        return self._helper.append_activation(batch_norm_out, self._act)
386 387


388 389 390 391 392 393 394 395 396 397 398 399
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.

    Args:
X
Xin Pan 已提交
400
        name_scope: See base class.
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        is_distributed(bool): Whether to run lookup table from remote parameter server.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc

    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          dict_size = len(dataset.ids)
          input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
          embedding = fluid.imperative.Embedding(size=[dict_size, 16])
          fc = embedding(input)
    """

427
    def __init__(self,
X
Xin Pan 已提交
428
                 name_scope,
429 430 431 432 433 434 435
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

X
Xin Pan 已提交
436
        super(Embedding, self).__init__(name_scope)
437 438 439 440 441
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed

        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
442
            size[0] + padding_idx)
443 444 445

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
446
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
447 448 449
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

450
        self._w = self.create_parameter(
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out