memcontrol.c 48.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/mutex.h>
31
#include <linux/slab.h>
32 33 34
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
35
#include <linux/seq_file.h>
36
#include <linux/vmalloc.h>
37
#include <linux/mm_inline.h>
38
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include "internal.h"
B
Balbir Singh 已提交
40

41 42
#include <asm/uaccess.h>

43 44
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
45

46 47 48 49 50 51 52 53 54
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif


55 56 57 58 59 60 61 62 63
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
64 65
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
66 67 68 69 70 71 72 73 74

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
75
	struct mem_cgroup_stat_cpu cpustat[0];
76 77 78 79 80
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
81
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 83
		enum mem_cgroup_stat_index idx, int val)
{
84
	stat->count[idx] += val;
85 86 87 88 89 90 91 92 93 94 95 96
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

97 98 99 100
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
101 102 103
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
104 105
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
106 107 108 109 110 111 112 113 114 115 116 117
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
118 119 120 121 122 123 124
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
125 126 127
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
128 129 130 131 132 133 134
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
135 136 137 138
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
139 140 141 142
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
143
	struct mem_cgroup_lru_info info;
144

145
	int	prev_priority;	/* for recording reclaim priority */
146 147 148 149 150 151

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
	 * reclaimed from. Protected by cgroup_lock()
	 */
	struct mem_cgroup *last_scanned_child;
152 153 154 155
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
156
	unsigned long	last_oom_jiffies;
157 158
	int		obsolete;
	atomic_t	refcnt;
159
	/*
160
	 * statistics. This must be placed at the end of memcg.
161 162
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
163 164
};

165 166 167
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
168
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
169
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
170
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
171 172 173
	NR_CHARGE_TYPE,
};

174 175 176 177
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
178 179
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
180 181 182
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
183
	0, /* FORCE */
184 185
};

186 187 188 189 190 191 192 193 194 195 196

/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);

197 198 199
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
200 201 202
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
203
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
204
	int cpu = get_cpu();
205

K
KAMEZAWA Hiroyuki 已提交
206
	cpustat = &stat->cpustat[cpu];
207
	if (PageCgroupCache(pc))
208
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
209
	else
210
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
211 212

	if (charge)
213
		__mem_cgroup_stat_add_safe(cpustat,
214 215
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
216
		__mem_cgroup_stat_add_safe(cpustat,
217
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
218
	put_cpu();
219 220
}

221
static struct mem_cgroup_per_zone *
222 223 224 225 226
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

227
static struct mem_cgroup_per_zone *
228 229 230 231 232
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
233

234 235 236 237
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
238
					enum lru_list idx)
239 240 241 242 243 244 245 246 247 248 249
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
250 251
}

252
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
253 254 255 256 257 258
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

259
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
260
{
261 262 263 264 265 266 267 268
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

269 270 271 272
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

K
KAMEZAWA Hiroyuki 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
286

K
KAMEZAWA Hiroyuki 已提交
287 288 289 290 291
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
292

293
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
294 295 296 297 298 299 300
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
	if (list_empty(&pc->lru))
		return;
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
301
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
302 303
	list_del_init(&pc->lru);
	return;
304 305
}

K
KAMEZAWA Hiroyuki 已提交
306
void mem_cgroup_del_lru(struct page *page)
307
{
K
KAMEZAWA Hiroyuki 已提交
308 309
	mem_cgroup_del_lru_list(page, page_lru(page));
}
310

K
KAMEZAWA Hiroyuki 已提交
311 312 313 314
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
315

316
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
317
		return;
318

K
KAMEZAWA Hiroyuki 已提交
319 320 321 322 323 324 325
	pc = lookup_page_cgroup(page);
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
326 327
}

K
KAMEZAWA Hiroyuki 已提交
328
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
329
{
K
KAMEZAWA Hiroyuki 已提交
330 331
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
332

333
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
334 335 336 337 338
		return;
	pc = lookup_page_cgroup(page);
	/* barrier to sync with "charge" */
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
339
		return;
340

K
KAMEZAWA Hiroyuki 已提交
341
	mz = page_cgroup_zoneinfo(pc);
342
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	list_add(&pc->lru, &mz->lists[lru]);
}
/*
 * To add swapcache into LRU. Be careful to all this function.
 * zone->lru_lock shouldn't be held and irq must not be disabled.
 */
static void mem_cgroup_lru_fixup(struct page *page)
{
	if (!isolate_lru_page(page))
		putback_lru_page(page);
}

void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
358
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
359 360 361
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
362 363
}

364 365 366 367 368
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
369
	ret = task->mm && mm_match_cgroup(task->mm, mem);
370 371 372 373
	task_unlock(task);
	return ret;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

410 411 412 413 414 415 416 417
/*
 * Calculate # of pages to be scanned in this priority/zone.
 * See also vmscan.c
 *
 * priority starts from "DEF_PRIORITY" and decremented in each loop.
 * (see include/linux/mmzone.h)
 */

418 419
long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
					int priority, enum lru_list lru)
420
{
421
	long nr_pages;
422 423 424 425
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

426
	nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
427

428
	return (nr_pages >> priority);
429 430
}

431 432 433 434 435
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
436
					int active, int file)
437 438 439 440 441 442
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
443
	struct page_cgroup *pc, *tmp;
444 445 446
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
447
	int lru = LRU_FILE * !!file + !!active;
448

449
	BUG_ON(!mem_cont);
450
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
451
	src = &mz->lists[lru];
452

453 454
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
455
		if (scan >= nr_to_scan)
456
			break;
K
KAMEZAWA Hiroyuki 已提交
457 458

		page = pc->page;
459 460
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
461
		if (unlikely(!PageLRU(page)))
462 463
			continue;

H
Hugh Dickins 已提交
464
		scan++;
465
		if (__isolate_lru_page(page, mode, file) == 0) {
466 467 468 469 470 471 472 473 474
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

/*
 * This routine finds the DFS walk successor. This routine should be
 * called with cgroup_mutex held
 */
static struct mem_cgroup *
mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;

	curr_cgroup = curr->css.cgroup;
	root_cgroup = root_mem->css.cgroup;

	if (!list_empty(&curr_cgroup->children)) {
		/*
		 * Walk down to children
		 */
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->children.next,
						struct cgroup, sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

visit_parent:
	if (curr_cgroup == root_cgroup) {
		mem_cgroup_put(curr);
		curr = root_mem;
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Goto next sibling
	 */
	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
						sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Go up to next parent and next parent's sibling if need be
	 */
	curr_cgroup = curr_cgroup->parent;
	goto visit_parent;

done:
	root_mem->last_scanned_child = curr;
	return curr;
}

/*
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup;
	struct mem_cgroup *ret;
	bool obsolete = (root_mem->last_scanned_child &&
				root_mem->last_scanned_child->obsolete);

	/*
	 * Scan all children under the mem_cgroup mem
	 */
	cgroup_lock();
	if (list_empty(&root_mem->css.cgroup->children)) {
		ret = root_mem;
		goto done;
	}

	if (!root_mem->last_scanned_child || obsolete) {

		if (obsolete)
			mem_cgroup_put(root_mem->last_scanned_child);

		cgroup = list_first_entry(&root_mem->css.cgroup->children,
				struct cgroup, sibling);
		ret = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(ret);
	} else
		ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
						root_mem);

done:
	root_mem->last_scanned_child = ret;
	cgroup_unlock();
	return ret;
}

574 575 576 577 578 579 580 581 582 583 584 585
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * Dance down the hierarchy if needed to reclaim memory. We remember the
 * last child we reclaimed from, so that we don't end up penalizing
 * one child extensively based on its position in the children list.
 *
 * root_mem is the original ancestor that we've been reclaim from.
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
						gfp_t gfp_mask, bool noswap)
{
	struct mem_cgroup *next_mem;
	int ret = 0;

	/*
	 * Reclaim unconditionally and don't check for return value.
	 * We need to reclaim in the current group and down the tree.
	 * One might think about checking for children before reclaiming,
	 * but there might be left over accounting, even after children
	 * have left.
	 */
	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
607
	if (mem_cgroup_check_under_limit(root_mem))
608 609 610 611 612 613 614 615 616 617 618 619 620
		return 0;

	next_mem = mem_cgroup_get_first_node(root_mem);

	while (next_mem != root_mem) {
		if (next_mem->obsolete) {
			mem_cgroup_put(next_mem);
			cgroup_lock();
			next_mem = mem_cgroup_get_first_node(root_mem);
			cgroup_unlock();
			continue;
		}
		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
621
		if (mem_cgroup_check_under_limit(root_mem))
622 623 624 625 626 627 628 629
			return 0;
		cgroup_lock();
		next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
		cgroup_unlock();
	}
	return ret;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
646 647 648
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
649
 */
650
static int __mem_cgroup_try_charge(struct mm_struct *mm,
651 652
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
653
{
654
	struct mem_cgroup *mem, *mem_over_limit;
655
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
656
	struct res_counter *fail_res;
657 658 659 660 661 662 663

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

664
	/*
665 666
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
667 668 669
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
670
	if (likely(!*memcg)) {
671 672
		rcu_read_lock();
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
673 674 675 676
		if (unlikely(!mem)) {
			rcu_read_unlock();
			return 0;
		}
677 678 679 680
		/*
		 * For every charge from the cgroup, increment reference count
		 */
		css_get(&mem->css);
681
		*memcg = mem;
682 683
		rcu_read_unlock();
	} else {
684 685
		mem = *memcg;
		css_get(&mem->css);
686
	}
687

688 689 690
	while (1) {
		int ret;
		bool noswap = false;
691

692
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
693 694 695
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
696 697
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
698 699 700 701 702
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
703 704 705 706 707 708 709
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

710
		if (!(gfp_mask & __GFP_WAIT))
711
			goto nomem;
712

713 714
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
							noswap);
715 716

		/*
717 718 719 720 721
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
722
		 *
723
		 */
724 725
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
726 727

		if (!nr_retries--) {
728
			if (oom) {
729 730
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
				mem_over_limit->last_oom_jiffies = jiffies;
731
			}
732
			goto nomem;
733
		}
734
	}
735 736 737 738 739
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
 * @gfp_mask: gfp_mask for reclaim.
 * @memcg: a pointer to memory cgroup which is charged against.
 *
 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
 * memory cgroup from @mm is got and stored in *memcg.
 *
 * Returns 0 if success. -ENOMEM at failure.
 * This call can invoke OOM-Killer.
 */

int mem_cgroup_try_charge(struct mm_struct *mm,
			  gfp_t mask, struct mem_cgroup **memcg)
{
	return __mem_cgroup_try_charge(mm, mask, memcg, true);
}

760 761 762 763 764 765 766 767 768 769 770 771
/*
 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
772 773 774 775 776

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
777 778
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
779
		css_put(&mem->css);
780
		return;
781
	}
782
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
783
	smp_wmb();
784
	pc->flags = pcg_default_flags[ctype];
785

K
KAMEZAWA Hiroyuki 已提交
786
	mem_cgroup_charge_statistics(mem, pc, true);
787 788

	unlock_page_cgroup(pc);
789
}
790

791 792 793 794 795 796 797
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
798
 * - page is not on LRU (isolate_page() is useful.)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
815
	VM_BUG_ON(PageLRU(pc->page));
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
831 832 833 834 835 836 837 838 839
	css_put(&from->css);
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	css_get(&to->css);
	ret = 0;
840 841 842 843 844 845 846 847 848 849 850 851 852
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
853
	struct page *page = pc->page;
854 855 856 857 858 859 860 861 862
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
863

864 865
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
866

867
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
868
	if (ret || !parent)
869 870
		return ret;

K
KAMEZAWA Hiroyuki 已提交
871 872 873 874 875 876 877
	if (!get_page_unless_zero(page))
		return -EBUSY;

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
878 879 880

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
881
	/* drop extra refcnt by try_charge() (move_account increment one) */
882
	css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
883 884 885 886
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
		return 0;
887
	}
K
KAMEZAWA Hiroyuki 已提交
888 889 890 891 892 893
	/* uncharge if move fails */
cancel:
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
	put_page(page);
894 895 896
	return ret;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
918
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
919
	if (ret || !mem)
920 921 922
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
923 924 925
	return 0;
}

926 927
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
928
{
929
	if (mem_cgroup_disabled())
930
		return 0;
931 932
	if (PageCompound(page))
		return 0;
933 934 935 936 937 938 939 940 941 942 943
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
944
	return mem_cgroup_charge_common(page, mm, gfp_mask,
945
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
946 947
}

948 949
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
950
{
951
	if (mem_cgroup_disabled())
952
		return 0;
953 954
	if (PageCompound(page))
		return 0;
955 956 957 958 959 960 961 962 963 964 965 966
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

967 968 969 970 971 972 973

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
974 975
			return 0;
		}
976
		unlock_page_cgroup(pc);
977 978
	}

979
	if (unlikely(!mm))
980
		mm = &init_mm;
981

982 983
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
984
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
985 986 987
	else
		return mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
988 989
}

990 991 992 993 994 995 996
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
	swp_entry_t     ent;

997
	if (mem_cgroup_disabled())
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;

	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;

	ent.val = page_private(page);

	mem = lookup_swap_cgroup(ent);
	if (!mem || mem->obsolete)
		goto charge_cur_mm;
	*ptr = mem;
	return __mem_cgroup_try_charge(NULL, mask, ptr, true);
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

K
KAMEZAWA Hiroyuki 已提交
1024
#ifdef CONFIG_SWAP
1025

K
KAMEZAWA Hiroyuki 已提交
1026 1027 1028 1029 1030
int mem_cgroup_cache_charge_swapin(struct page *page,
			struct mm_struct *mm, gfp_t mask, bool locked)
{
	int ret = 0;

1031
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
	if (!locked)
		lock_page(page);
	/*
	 * If not locked, the page can be dropped from SwapCache until
	 * we reach here.
	 */
	if (PageSwapCache(page)) {
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		struct mem_cgroup *mem = NULL;
		swp_entry_t ent;

		ent.val = page_private(page);
		if (do_swap_account) {
			mem = lookup_swap_cgroup(ent);
			if (mem && mem->obsolete)
				mem = NULL;
			if (mem)
				mm = NULL;
		}
K
KAMEZAWA Hiroyuki 已提交
1053
		ret = mem_cgroup_charge_common(page, mm, mask,
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);

		if (!ret && do_swap_account) {
			/* avoid double counting */
			mem = swap_cgroup_record(ent, NULL);
			if (mem) {
				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
				mem_cgroup_put(mem);
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1064 1065 1066
	}
	if (!locked)
		unlock_page(page);
K
KAMEZAWA Hiroyuki 已提交
1067 1068
	/* add this page(page_cgroup) to the LRU we want. */
	mem_cgroup_lru_fixup(page);
K
KAMEZAWA Hiroyuki 已提交
1069 1070 1071 1072 1073

	return ret;
}
#endif

1074 1075 1076 1077
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1078
	if (mem_cgroup_disabled())
1079 1080 1081 1082 1083
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
	 * Fix it by uncharging from memsw. This SwapCache is stable
	 * because we're still under lock_page().
	 */
	if (do_swap_account) {
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			/* If memcg is obsolete, memcg can be != ptr */
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1101 1102
	/* add this page(page_cgroup) to the LRU we want. */
	mem_cgroup_lru_fixup(page);
1103 1104 1105 1106
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1107
	if (mem_cgroup_disabled())
1108 1109 1110 1111
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1112 1113
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1114 1115 1116 1117
	css_put(&mem->css);
}


1118
/*
1119
 * uncharge if !page_mapped(page)
1120
 */
1121
static struct mem_cgroup *
1122
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1123
{
H
Hugh Dickins 已提交
1124
	struct page_cgroup *pc;
1125
	struct mem_cgroup *mem = NULL;
1126
	struct mem_cgroup_per_zone *mz;
1127

1128
	if (mem_cgroup_disabled())
1129
		return NULL;
1130

K
KAMEZAWA Hiroyuki 已提交
1131
	if (PageSwapCache(page))
1132
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1133

1134
	/*
1135
	 * Check if our page_cgroup is valid
1136
	 */
1137 1138
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1139
		return NULL;
1140

1141
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1142

1143 1144
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1162
	}
K
KAMEZAWA Hiroyuki 已提交
1163

1164 1165 1166 1167
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
1168
	mem_cgroup_charge_statistics(mem, pc, false);
1169
	ClearPageCgroupUsed(pc);
1170

1171
	mz = page_cgroup_zoneinfo(pc);
1172
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1173

1174
	css_put(&mem->css);
1175

1176
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1177 1178 1179

unlock_out:
	unlock_page_cgroup(pc);
1180
	return NULL;
1181 1182
}

1183 1184
void mem_cgroup_uncharge_page(struct page *page)
{
1185 1186 1187 1188 1189
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1190 1191 1192 1193 1194 1195
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1196
	VM_BUG_ON(page->mapping);
1197 1198 1199
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1223
{
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1234
}
1235
#endif
K
KAMEZAWA Hiroyuki 已提交
1236

1237
/*
1238 1239
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1240
 */
1241
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1242 1243
{
	struct page_cgroup *pc;
1244 1245
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1246

1247
	if (mem_cgroup_disabled())
1248 1249
		return 0;

1250 1251 1252
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1253 1254 1255
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1256
	unlock_page_cgroup(pc);
1257

1258
	if (mem) {
K
KAMEZAWA Hiroyuki 已提交
1259
		ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1260 1261
		css_put(&mem->css);
	}
1262
	*ptr = mem;
1263
	return ret;
1264
}
1265

1266
/* remove redundant charge if migration failed*/
1267 1268
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1269
{
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1294
	if (unused)
1295 1296 1297
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1298
	/*
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1313
	 */
1314 1315
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1316
}
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
{
	struct mem_cgroup *mem;
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1329
	if (mem_cgroup_disabled())
1330
		return 0;
1331 1332
	if (!mm)
		return 0;
1333

1334 1335
	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1336 1337 1338 1339
	if (unlikely(!mem)) {
		rcu_read_unlock();
		return 0;
	}
1340 1341 1342 1343
	css_get(&mem->css);
	rcu_read_unlock();

	do {
1344
		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
1345
		progress += mem_cgroup_check_under_limit(mem);
1346 1347 1348 1349 1350 1351 1352 1353
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1354 1355
static DEFINE_MUTEX(set_limit_mutex);

1356
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1357
				unsigned long long val)
1358 1359 1360 1361
{

	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	int progress;
1362
	u64 memswlimit;
1363 1364
	int ret = 0;

1365
	while (retry_count) {
1366 1367 1368 1369
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1380 1381
			break;
		}
1382 1383 1384 1385 1386 1387
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1388
		progress = try_to_free_mem_cgroup_pages(memcg,
K
KAMEZAWA Hiroyuki 已提交
1389
				GFP_KERNEL, false);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
  		if (!progress)			retry_count--;
	}
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	u64 memlimit, oldusage, curusage;
	int ret;

	if (!do_swap_account)
		return -EINVAL;

	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
K
KAMEZAWA Hiroyuki 已提交
1429
		try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
1430 1431
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
		if (curusage >= oldusage)
1432 1433 1434 1435 1436
			retry_count--;
	}
	return ret;
}

1437 1438 1439 1440
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1441
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1442
				int node, int zid, enum lru_list lru)
1443
{
K
KAMEZAWA Hiroyuki 已提交
1444 1445
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1446
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1447
	unsigned long flags, loop;
1448
	struct list_head *list;
1449
	int ret = 0;
1450

K
KAMEZAWA Hiroyuki 已提交
1451 1452
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1453
	list = &mz->lists[lru];
1454

1455 1456 1457 1458 1459 1460
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1461
		spin_lock_irqsave(&zone->lru_lock, flags);
1462
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1463
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1464
			break;
1465 1466 1467 1468 1469
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1470
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1471 1472
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1473
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1474

K
KAMEZAWA Hiroyuki 已提交
1475
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1476
		if (ret == -ENOMEM)
1477
			break;
1478 1479 1480 1481 1482 1483 1484

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1485
	}
K
KAMEZAWA Hiroyuki 已提交
1486

1487 1488 1489
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1490 1491 1492 1493 1494 1495
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1496
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1497
{
1498 1499 1500
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1501
	struct cgroup *cgrp = mem->css.cgroup;
1502

1503
	css_get(&mem->css);
1504 1505

	shrink = 0;
1506 1507 1508
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1509
move_account:
1510
	while (mem->res.usage > 0) {
1511
		ret = -EBUSY;
1512 1513 1514 1515
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1516
			goto out;
1517 1518
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1519 1520 1521
		ret = 0;
		for_each_node_state(node, N_POSSIBLE) {
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1522
				enum lru_list l;
1523 1524
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1525
							node, zid, l);
1526 1527 1528
					if (ret)
						break;
				}
1529
			}
1530 1531 1532 1533 1534 1535
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1536
		cond_resched();
1537 1538 1539 1540 1541
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1542 1543

try_to_free:
1544 1545
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1546 1547 1548
		ret = -EBUSY;
		goto out;
	}
1549 1550
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1551 1552 1553 1554
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1555 1556 1557 1558 1559

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
1560
		progress = try_to_free_mem_cgroup_pages(mem,
K
KAMEZAWA Hiroyuki 已提交
1561
						  GFP_KERNEL, false);
1562
		if (!progress) {
1563
			nr_retries--;
1564 1565 1566
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1567 1568

	}
K
KAMEZAWA Hiroyuki 已提交
1569
	lru_add_drain();
1570 1571 1572 1573 1574
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1575 1576
}

1577 1578 1579 1580 1581 1582
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1621
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1622
{
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1642
}
1643 1644 1645 1646
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1647 1648
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1649
{
1650
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1651
	int type, name;
1652 1653 1654
	unsigned long long val;
	int ret;

1655 1656 1657
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1658 1659 1660
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1661 1662 1663
		if (ret)
			break;
		if (type == _MEM)
1664
			ret = mem_cgroup_resize_limit(memcg, val);
1665 1666
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1667 1668 1669 1670 1671 1672
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1673 1674
}

1675
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1676 1677
{
	struct mem_cgroup *mem;
1678
	int type, name;
1679 1680

	mem = mem_cgroup_from_cont(cont);
1681 1682 1683
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
1684
	case RES_MAX_USAGE:
1685 1686 1687 1688
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
1689 1690
		break;
	case RES_FAILCNT:
1691 1692 1693 1694
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
1695 1696
		break;
	}
1697
	return 0;
1698 1699
}

1700 1701 1702 1703 1704 1705
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1706 1707
	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1708 1709
};

1710 1711
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
1722
		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1723
	}
1724 1725
	/* showing # of active pages */
	{
1726 1727
		unsigned long active_anon, inactive_anon;
		unsigned long active_file, inactive_file;
L
Lee Schermerhorn 已提交
1728
		unsigned long unevictable;
1729 1730 1731 1732 1733 1734 1735 1736 1737

		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_ANON);
		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_ANON);
		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_FILE);
		active_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_FILE);
L
Lee Schermerhorn 已提交
1738 1739 1740
		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
							LRU_UNEVICTABLE);

1741 1742 1743 1744
		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
L
Lee Schermerhorn 已提交
1745 1746
		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);

1747
	}
1748 1749 1750
	return 0;
}

1751

B
Balbir Singh 已提交
1752 1753
static struct cftype mem_cgroup_files[] = {
	{
1754
		.name = "usage_in_bytes",
1755
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1756
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1757
	},
1758 1759
	{
		.name = "max_usage_in_bytes",
1760
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1761
		.trigger = mem_cgroup_reset,
1762 1763
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
1764
	{
1765
		.name = "limit_in_bytes",
1766
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1767
		.write_string = mem_cgroup_write,
1768
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1769 1770 1771
	},
	{
		.name = "failcnt",
1772
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1773
		.trigger = mem_cgroup_reset,
1774
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1775
	},
1776 1777
	{
		.name = "stat",
1778
		.read_map = mem_control_stat_show,
1779
	},
1780 1781 1782 1783
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
1784 1785 1786 1787 1788
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
B
Balbir Singh 已提交
1789 1790
};

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

1832 1833 1834
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
1835
	struct mem_cgroup_per_zone *mz;
1836
	enum lru_list l;
1837
	int zone, tmp = node;
1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
1846 1847 1848
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1849 1850
	if (!pn)
		return 1;
1851

1852 1853
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
1854 1855 1856

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
1857 1858
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
1859
	}
1860 1861 1862
	return 0;
}

1863 1864 1865 1866 1867
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

1868 1869 1870 1871 1872 1873
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

1874 1875 1876
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
1877
	int size = mem_cgroup_size();
1878

1879 1880
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
1881
	else
1882
		mem = vmalloc(size);
1883 1884

	if (mem)
1885
		memset(mem, 0, size);
1886 1887 1888
	return mem;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
 * entry which points to this memcg will be ignore at swapin.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

1903 1904
static void mem_cgroup_free(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1905 1906
	int node;

1907 1908
	if (atomic_read(&mem->refcnt) > 0)
		return;
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912 1913


	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

1914
	if (mem_cgroup_size() < PAGE_SIZE)
1915 1916 1917 1918 1919
		kfree(mem);
	else
		vfree(mem);
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
	if (atomic_dec_and_test(&mem->refcnt)) {
		if (!mem->obsolete)
			return;
		mem_cgroup_free(mem);
	}
}

1934

1935 1936 1937
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
1938
	if (!mem_cgroup_disabled() && really_do_swap_account)
1939 1940 1941 1942 1943 1944 1945 1946
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

B
Balbir Singh 已提交
1947 1948 1949
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
1950
	struct mem_cgroup *mem, *parent;
1951
	int node;
B
Balbir Singh 已提交
1952

1953 1954 1955
	mem = mem_cgroup_alloc();
	if (!mem)
		return ERR_PTR(-ENOMEM);
1956

1957 1958 1959
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
1960
	/* root ? */
1961
	if (cont->parent == NULL) {
1962
		enable_swap_cgroup();
1963
		parent = NULL;
1964
	} else {
1965
		parent = mem_cgroup_from_cont(cont->parent);
1966 1967
		mem->use_hierarchy = parent->use_hierarchy;
	}
1968

1969 1970 1971 1972 1973 1974 1975
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
1976

1977 1978
	mem->last_scanned_child = NULL;

B
Balbir Singh 已提交
1979
	return &mem->css;
1980 1981
free_out:
	for_each_node_state(node, N_POSSIBLE)
1982
		free_mem_cgroup_per_zone_info(mem, node);
1983
	mem_cgroup_free(mem);
1984
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
1985 1986
}

1987 1988 1989 1990
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1991
	mem->obsolete = 1;
1992
	mem_cgroup_force_empty(mem, false);
1993 1994
}

B
Balbir Singh 已提交
1995 1996 1997
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1998
	mem_cgroup_free(mem_cgroup_from_cont(cont));
B
Balbir Singh 已提交
1999 2000 2001 2002 2003
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2004 2005 2006 2007 2008 2009 2010 2011
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2012 2013
}

B
Balbir Singh 已提交
2014 2015 2016 2017 2018 2019
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	/*
2020 2021
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2022 2023 2024
	 */
}

B
Balbir Singh 已提交
2025 2026 2027 2028
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2029
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2030 2031
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2032
	.attach = mem_cgroup_move_task,
2033
	.early_init = 0,
B
Balbir Singh 已提交
2034
};
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif