memcontrol.c 27.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
B
Balbir Singh 已提交
33

34 35
#include <asm/uaccess.h>

B
Balbir Singh 已提交
36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * per-zone information in memory controller.
 */

enum mem_cgroup_zstat_index {
	MEM_CGROUP_ZSTAT_ACTIVE,
	MEM_CGROUP_ZSTAT_INACTIVE,

	NR_MEM_CGROUP_ZSTAT,
};

struct mem_cgroup_per_zone {
	unsigned long count[NR_MEM_CGROUP_ZSTAT];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
105 106 107 108 109 110 111
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
112 113 114
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
115 116 117 118 119 120 121
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
122 123 124 125 126 127 128
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 * TODO: Consider making these lists per zone
	 */
	struct list_head active_list;
	struct list_head inactive_list;
129
	struct mem_cgroup_lru_info info;
130 131 132 133
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t lru_lock;
134
	unsigned long control_type;	/* control RSS or RSS+Pagecache */
135 136 137 138
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
139 140
};

141 142 143 144 145 146 147 148
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

B
Balbir Singh 已提交
149 150 151 152 153 154 155 156
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
157 158
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
159
	int	 flags;
B
Balbir Singh 已提交
160
};
161
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
162
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
163

164 165 166 167 168 169 170 171 172 173
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
	return page_to_nid(pc->page);
}

static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
	return page_zonenum(pc->page);
}

174 175 176 177 178 179 180 181
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

182 183 184 185 186
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

static inline struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	BUG_ON(!mem->info.nodeinfo[nid]);
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static inline struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
					enum mem_cgroup_zstat_index idx)
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
235 236
}

237
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
238 239 240 241 242 243 244 245 246

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

268 269 270 271 272 273
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

274 275
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
276 277 278 279 280 281 282 283 284 285 286
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
287 288 289 290
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
291 292 293 294
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

295
static void __always_inline lock_page_cgroup(struct page *page)
296 297 298 299 300
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

301
static void __always_inline unlock_page_cgroup(struct page *page)
302 303 304 305
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

306 307 308 309 310
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
311 312
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

334 335
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
336 337 338 339 340 341 342 343 344 345 346
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
{
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
	list_del_init(&pc->lru);
}

static void __mem_cgroup_add_list(struct page_cgroup *pc)
{
	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (!to) {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
		list_add(&pc->lru, &pc->mem_cgroup->inactive_list);
	} else {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
		list_add(&pc->lru, &pc->mem_cgroup->active_list);
	}
	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
}

376
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
377
{
378 379 380 381 382 383 384 385
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

386
	if (active) {
387
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389
		list_move(&pc->lru, &pc->mem_cgroup->active_list);
390
	} else {
391
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393
		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
394
	}
395 396
}

397 398 399 400 401 402 403 404 405 406
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
	ret = task->mm && mm_cgroup(task->mm) == mem;
	task_unlock(task);
	return ret;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
	struct mem_cgroup *mem;
	if (!pc)
		return;

	mem = pc->mem_cgroup;

	spin_lock(&mem->lru_lock);
	__mem_cgroup_move_lists(pc, active);
	spin_unlock(&mem->lru_lock);
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
439 440 441 442 443 444 445 446 447 448 449 450 451 452
/*
 * This function is called from vmscan.c. In page reclaiming loop. balance
 * between active and inactive list is calculated. For memory controller
 * page reclaiming, we should use using mem_cgroup's imbalance rather than
 * zone's global lru imbalance.
 */
long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
{
	unsigned long active, inactive;
	/* active and inactive are the number of pages. 'long' is ok.*/
	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
	return (long) (active / (inactive + 1));
}
453

454 455 456 457 458 459 460 461 462 463 464 465
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
466
	struct page_cgroup *pc, *tmp;
467 468 469 470 471 472 473

	if (active)
		src = &mem_cont->active_list;
	else
		src = &mem_cont->inactive_list;

	spin_lock(&mem_cont->lru_lock);
474 475
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
476
		if (scan >= nr_to_scan)
477
			break;
478 479 480
		page = pc->page;
		VM_BUG_ON(!pc);

H
Hugh Dickins 已提交
481
		if (unlikely(!PageLRU(page)))
482 483
			continue;

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

		/*
		 * Reclaim, per zone
		 * TODO: make the active/inactive lists per zone
		 */
		if (page_zone(page) != z)
			continue;

H
Hugh Dickins 已提交
500 501
		scan++;
		list_move(&pc->lru, &pc_list);
502 503 504 505 506 507 508 509 510 511 512 513 514 515

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
	spin_unlock(&mem_cont->lru_lock);

	*scanned = scan;
	return nr_taken;
}

516 517 518 519 520 521
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
522 523
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
524 525
{
	struct mem_cgroup *mem;
526
	struct page_cgroup *pc;
527 528
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
529 530 531 532 533 534 535 536

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
537
retry:
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
555
		}
556
		unlock_page_cgroup(page);
557 558
	}

559
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
560 561 562 563
	if (pc == NULL)
		goto err;

	/*
564 565
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
566 567 568 569 570 571
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

572
	rcu_read_lock();
573 574 575 576 577 578 579 580 581 582 583 584
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
585
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
586 587
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
588 589

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
590 591 592 593 594 595 596 597 598 599 600
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
601 602 603 604

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
605
		}
606
		congestion_wait(WRITE, HZ/10);
607 608 609 610 611
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
612
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
613 614
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
615

616
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
617
		/*
618 619
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
620 621 622 623 624
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
625 626
		if (!page)
			goto done;
627 628
		goto retry;
	}
629

630
	spin_lock_irqsave(&mem->lru_lock, flags);
631
	/* Update statistics vector */
632
	__mem_cgroup_add_list(pc);
633 634
	spin_unlock_irqrestore(&mem->lru_lock, flags);

635 636
done:
	return 0;
637 638
out:
	css_put(&mem->css);
639 640 641 642 643
	kfree(pc);
err:
	return -ENOMEM;
}

644 645 646 647 648 649 650
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

651 652 653
/*
 * See if the cached pages should be charged at all?
 */
654 655
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
656
{
657
	int ret = 0;
658 659 660 661
	struct mem_cgroup *mem;
	if (!mm)
		mm = &init_mm;

662
	rcu_read_lock();
663
	mem = rcu_dereference(mm->mem_cgroup);
664 665
	css_get(&mem->css);
	rcu_read_unlock();
666
	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
667
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
668
				MEM_CGROUP_CHARGE_TYPE_CACHE);
669 670
	css_put(&mem->css);
	return ret;
671 672
}

673 674 675 676 677 678 679 680
/*
 * Uncharging is always a welcome operation, we never complain, simply
 * uncharge.
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
	struct page *page;
681
	unsigned long flags;
682

683 684 685 686
	/*
	 * This can handle cases when a page is not charged at all and we
	 * are switching between handling the control_type.
	 */
687 688 689 690 691
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
692 693
		/*
		 * get page->cgroup and clear it under lock.
694
		 * force_empty can drop page->cgroup without checking refcnt.
695 696 697 698 699 700
		 */
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			spin_lock_irqsave(&mem->lru_lock, flags);
701
			__mem_cgroup_remove_list(pc);
702 703 704
			spin_unlock_irqrestore(&mem->lru_lock, flags);
			kfree(pc);
		}
705
	}
706
}
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
	struct page_cgroup *pc = page_get_page_cgroup(page);
	mem_cgroup_uncharge(pc);
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
739 740
	struct mem_cgroup *mem;
	unsigned long flags;
741 742 743 744
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
745
	mem = pc->mem_cgroup;
746 747
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
748 749 750 751

	spin_lock_irqsave(&mem->lru_lock, flags);

	__mem_cgroup_remove_list(pc);
752 753 754 755
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
756 757 758
	__mem_cgroup_add_list(pc);

	spin_unlock_irqrestore(&mem->lru_lock, flags);
759 760
	return;
}
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;

retry:
	count = FORCE_UNCHARGE_BATCH;
	spin_lock_irqsave(&mem->lru_lock, flags);

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
788
			__mem_cgroup_remove_list(pc);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
	spin_unlock_irqrestore(&mem->lru_lock, flags);
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
	while (!(list_empty(&mem->active_list) &&
		 list_empty(&mem->inactive_list))) {
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
		/* drop all page_cgroup in active_list */
		mem_cgroup_force_empty_list(mem, &mem->active_list);
		/* drop all page_cgroup in inactive_list */
		mem_cgroup_force_empty_list(mem, &mem->inactive_list);
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
848 849
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
850 851
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
852 853 854 855 856 857 858
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
859 860
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static ssize_t mem_control_type_write(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			const char __user *userbuf,
			size_t nbytes, loff_t *pos)
{
	int ret;
	char *buf, *end;
	unsigned long tmp;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	ret = -ENOMEM;
	if (buf == NULL)
		goto out;

	buf[nbytes] = 0;
	ret = -EFAULT;
	if (copy_from_user(buf, userbuf, nbytes))
		goto out_free;

	ret = -EINVAL;
	tmp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto out_free;

	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
		goto out_free;

	mem->control_type = tmp;
	ret = nbytes;
out_free:
	kfree(buf);
out:
	return ret;
}

static ssize_t mem_control_type_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long val;
	char buf[64], *s;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	s = buf;
	val = mem->control_type;
	s += sprintf(s, "%lu\n", val);
	return simple_read_from_buffer((void __user *)userbuf, nbytes,
			ppos, buf, s - buf);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
967 968 969 970 971 972 973 974 975 976 977
	/* showing # of active pages */
	{
		unsigned long active, inactive;

		inactive = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_INACTIVE);
		active = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_ACTIVE);
		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
	}
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



B
Balbir Singh 已提交
998 999
static struct cftype mem_cgroup_files[] = {
	{
1000
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
1001 1002 1003 1004
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
1005
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
1015 1016 1017 1018 1019
	{
		.name = "control_type",
		.write = mem_control_type_write,
		.read = mem_control_type_read,
	},
1020 1021 1022 1023 1024
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
1025 1026 1027 1028
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
B
Balbir Singh 已提交
1029 1030
};

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;

	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
	if (!pn)
		return 1;
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
	return 0;
}

1043 1044
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
1045 1046 1047 1048
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;
1049
	int node;
B
Balbir Singh 已提交
1050

1051 1052 1053 1054 1055 1056 1057 1058
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
B
Balbir Singh 已提交
1059 1060

	res_counter_init(&mem->res);
1061 1062
	INIT_LIST_HEAD(&mem->active_list);
	INIT_LIST_HEAD(&mem->inactive_list);
1063
	spin_lock_init(&mem->lru_lock);
1064
	mem->control_type = MEM_CGROUP_TYPE_ALL;
1065 1066 1067 1068 1069 1070
	memset(&mem->info, 0, sizeof(mem->info));

	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;

B
Balbir Singh 已提交
1071
	return &mem->css;
1072 1073 1074 1075 1076 1077
free_out:
	for_each_node_state(node, N_POSSIBLE)
		kfree(mem->info.nodeinfo[node]);
	if (cont->parent != NULL)
		kfree(mem);
	return NULL;
B
Balbir Singh 已提交
1078 1079
}

1080 1081 1082 1083 1084 1085 1086
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

B
Balbir Singh 已提交
1087 1088 1089
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1090 1091 1092 1093 1094 1095
	int node;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	for_each_node_state(node, N_POSSIBLE)
		kfree(mem->info.nodeinfo[node]);

B
Balbir Singh 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
1140 1141 1142 1143
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
1144
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
1145 1146
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
1147
	.attach = mem_cgroup_move_task,
1148
	.early_init = 0,
B
Balbir Singh 已提交
1149
};