mv88e6xxx.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11 12
#include <linux/delay.h>
#include <linux/jiffies.h>
13
#include <linux/list.h>
14
#include <linux/module.h>
15 16
#include <linux/netdevice.h>
#include <linux/phy.h>
17
#include <net/dsa.h>
18 19
#include "mv88e6xxx.h"

20
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
		ret = mdiobus_read(bus, sw_addr, 0);
		if (ret < 0)
			return ret;

		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

52
	/* Wait for the bus to become free. */
53 54 55 56
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

57
	/* Transmit the read command. */
58 59 60 61
	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

62
	/* Wait for the read command to complete. */
63 64 65 66
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

67
	/* Read the data. */
68 69 70 71 72 73 74 75 76
	ret = mdiobus_read(bus, sw_addr, 1);
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
77
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
78
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
79 80
	int ret;

81 82 83
	if (bus == NULL)
		return -EINVAL;

84
	mutex_lock(&ps->smi_mutex);
85
	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
86 87 88 89 90 91 92 93 94 95 96 97 98
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

99
	/* Wait for the bus to become free. */
100 101 102 103
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

104
	/* Transmit the data to write. */
105 106 107 108
	ret = mdiobus_write(bus, sw_addr, 1, val);
	if (ret < 0)
		return ret;

109
	/* Transmit the write command. */
110 111 112 113
	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

114
	/* Wait for the write command to complete. */
115 116 117 118 119 120 121 122 123
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
124
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
125
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
126 127
	int ret;

128 129 130
	if (bus == NULL)
		return -EINVAL;

131
	mutex_lock(&ps->smi_mutex);
132
	ret = __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
133 134 135 136 137 138 139
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
140
	/* Configure the IP ToS mapping registers. */
141 142 143 144 145 146 147 148 149
	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

150
	/* Configure the IEEE 802.1p priority mapping register. */
151 152 153 154 155
	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

	return 0;
}

156 157 158 159 160 161 162 163 164
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

	return 0;
}

165 166 167 168 169 170 171 172
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

173
		/* Write the MAC address byte. */
174 175
		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

176
		/* Wait for the write to complete. */
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		for (j = 0; j < 16; j++) {
			ret = REG_READ(REG_GLOBAL2, 0x0d);
			if ((ret & 0x8000) == 0)
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

203 204 205 206
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
207
	unsigned long timeout;
208 209 210 211

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

212 213
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
214
		ret = REG_READ(REG_GLOBAL, 0x00);
215
		usleep_range(1000, 2000);
216 217
		if ((ret & 0xc000) != 0xc000)
			return 0;
218 219 220 221 222 223 224 225
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
226
	unsigned long timeout;
227 228 229 230

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

231 232
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
233
		ret = REG_READ(REG_GLOBAL, 0x00);
234
		usleep_range(1000, 2000);
235 236
		if ((ret & 0xc000) == 0xc000)
			return 0;
237 238 239 240 241 242 243 244 245 246 247
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
248
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
249

250 251 252
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
253 254 255 256 257 258 259 260 261 262 263 264
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
265
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
266 267 268 269
	int ret;

	mutex_lock(&ps->ppu_mutex);

270
	/* If the PHY polling unit is enabled, disable it so that
271 272 273 274 275
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
276 277 278 279 280 281
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
282
	} else {
283 284
		del_timer(&ps->ppu_timer);
		ret = 0;
285 286 287 288 289 290 291
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
292
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
293

294
	/* Schedule a timer to re-enable the PHY polling unit. */
295 296 297 298 299 300
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
301
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302 303 304 305 306 307 308 309 310 311 312 313 314 315

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
316 317
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
318 319 320 321 322 323 324 325 326 327 328 329
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
330 331
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
332 333 334 335 336 337
	}

	return ret;
}
#endif

338 339 340 341 342 343
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
344
		int uninitialized_var(port_status);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
			if (port_status < 0)
				continue;

			link = !!(port_status & 0x0800);
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
365
				netdev_info(dev, "link down\n");
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
				netif_carrier_off(dev);
			}
			continue;
		}

		switch (port_status & 0x0300) {
		case 0x0000:
			speed = 10;
			break;
		case 0x0100:
			speed = 100;
			break;
		case 0x0200:
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
		duplex = (port_status & 0x0400) ? 1 : 0;
		fc = (port_status & 0x8000) ? 1 : 0;

		if (!netif_carrier_ok(dev)) {
389 390 391 392 393
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
394 395 396 397 398 399 400 401 402 403 404
			netif_carrier_on(dev);
		}
	}
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
405
		ret = REG_READ(REG_GLOBAL, 0x1d);
406 407 408 409 410 411 412 413 414 415 416
		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

417
	/* Snapshot the hardware statistics counters for this port. */
418 419
	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

420
	/* Wait for the snapshotting to complete. */
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
	if (ret < 0)
		return;

	_val = ret << 16;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
	if (ret < 0)
		return;

	*val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
			   int port, uint8_t *data)
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
				 int port, uint64_t *data)
{
472
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
473 474 475 476 477 478 479 480 481 482 483
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

484
	/* Read each of the counters. */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
		u32 high;

		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);
		else
			high = 0;

		data[i] = (((u64)high) << 32) | low;
	}

	mutex_unlock(&ps->stats_mutex);
}
501 502 503 504 505 506 507 508

static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
509 510 511
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
512 513 514 515 516 517 518
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
519 520 521
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
522 523 524 525 526 527 528 529
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
530 531 532 533

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");