mv88e6xxx.c 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11 12
#include <linux/delay.h>
#include <linux/jiffies.h>
13
#include <linux/list.h>
14
#include <linux/module.h>
15 16
#include <linux/netdevice.h>
#include <linux/phy.h>
17
#include <net/dsa.h>
18 19
#include "mv88e6xxx.h"

20
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
		ret = mdiobus_read(bus, sw_addr, 0);
		if (ret < 0)
			return ret;

		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

52
	/* Wait for the bus to become free. */
53 54 55 56
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

57
	/* Transmit the read command. */
58 59 60 61
	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

62
	/* Wait for the read command to complete. */
63 64 65 66
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

67
	/* Read the data. */
68 69 70 71 72 73 74 75 76
	ret = mdiobus_read(bus, sw_addr, 1);
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
77
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
78 79 80
	int ret;

	mutex_lock(&ps->smi_mutex);
81
	ret = __mv88e6xxx_reg_read(to_mii_bus(ds->master_dev),
82 83 84 85 86 87 88 89 90 91 92 93 94 95
				   ds->pd->sw_addr, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

96
	/* Wait for the bus to become free. */
97 98 99 100
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

101
	/* Transmit the data to write. */
102 103 104 105
	ret = mdiobus_write(bus, sw_addr, 1, val);
	if (ret < 0)
		return ret;

106
	/* Transmit the write command. */
107 108 109 110
	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

111
	/* Wait for the write command to complete. */
112 113 114 115 116 117 118 119 120
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
121
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
122 123 124
	int ret;

	mutex_lock(&ps->smi_mutex);
125
	ret = __mv88e6xxx_reg_write(to_mii_bus(ds->master_dev),
126 127 128 129 130 131 132 133
				    ds->pd->sw_addr, addr, reg, val);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
134
	/* Configure the IP ToS mapping registers. */
135 136 137 138 139 140 141 142 143
	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

144
	/* Configure the IEEE 802.1p priority mapping register. */
145 146 147 148 149
	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

	return 0;
}

150 151 152 153 154 155 156 157 158
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

	return 0;
}

159 160 161 162 163 164 165 166
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

167
		/* Write the MAC address byte. */
168 169
		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

170
		/* Wait for the write to complete. */
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
		for (j = 0; j < 16; j++) {
			ret = REG_READ(REG_GLOBAL2, 0x0d);
			if ((ret & 0x8000) == 0)
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

197 198 199 200
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
201
	unsigned long timeout;
202 203 204 205

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

206 207
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
208
		ret = REG_READ(REG_GLOBAL, 0x00);
209
		usleep_range(1000, 2000);
210 211
		if ((ret & 0xc000) != 0xc000)
			return 0;
212 213 214 215 216 217 218 219
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
220
	unsigned long timeout;
221 222 223 224

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

225 226
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
227
		ret = REG_READ(REG_GLOBAL, 0x00);
228
		usleep_range(1000, 2000);
229 230
		if ((ret & 0xc000) == 0xc000)
			return 0;
231 232 233 234 235 236 237 238 239 240 241
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
242
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
243

244 245 246
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
247 248 249 250 251 252 253 254 255 256 257 258
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
259
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
260 261 262 263
	int ret;

	mutex_lock(&ps->ppu_mutex);

264
	/* If the PHY polling unit is enabled, disable it so that
265 266 267 268 269
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
270 271 272 273 274 275
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
276
	} else {
277 278
		del_timer(&ps->ppu_timer);
		ret = 0;
279 280 281 282 283 284 285
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
286
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
287

288
	/* Schedule a timer to re-enable the PHY polling unit. */
289 290 291 292 293 294
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
295
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
296 297 298 299 300 301 302 303 304 305 306 307 308 309

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
310 311
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
312 313 314 315 316 317 318 319 320 321 322 323
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
324 325
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
326 327 328 329 330 331
	}

	return ret;
}
#endif

332 333 334 335 336 337
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
338
		int uninitialized_var(port_status);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
			if (port_status < 0)
				continue;

			link = !!(port_status & 0x0800);
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
359
				netdev_info(dev, "link down\n");
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
				netif_carrier_off(dev);
			}
			continue;
		}

		switch (port_status & 0x0300) {
		case 0x0000:
			speed = 10;
			break;
		case 0x0100:
			speed = 100;
			break;
		case 0x0200:
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
		duplex = (port_status & 0x0400) ? 1 : 0;
		fc = (port_status & 0x8000) ? 1 : 0;

		if (!netif_carrier_ok(dev)) {
383 384 385 386 387
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
388 389 390 391 392 393 394 395 396 397 398
			netif_carrier_on(dev);
		}
	}
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
399
		ret = REG_READ(REG_GLOBAL, 0x1d);
400 401 402 403 404 405 406 407 408 409 410
		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

411
	/* Snapshot the hardware statistics counters for this port. */
412 413
	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

414
	/* Wait for the snapshotting to complete. */
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
	if (ret < 0)
		return;

	_val = ret << 16;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
	if (ret < 0)
		return;

	*val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
			   int port, uint8_t *data)
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
				 int port, uint64_t *data)
{
466
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
467 468 469 470 471 472 473 474 475 476 477
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

478
	/* Read each of the counters. */
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
		u32 high;

		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);
		else
			high = 0;

		data[i] = (((u64)high) << 32) | low;
	}

	mutex_unlock(&ps->stats_mutex);
}
495 496 497 498 499 500 501 502

static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
503 504 505
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
506 507 508 509 510 511 512
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
513 514 515
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
516 517 518 519 520 521 522 523
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
524 525 526 527

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");