inode.c 168.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54 55 56 57
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
58 59
}

60 61
static void ext4_invalidatepage(struct page *page, unsigned long offset);

62 63 64
/*
 * Test whether an inode is a fast symlink.
 */
65
static int ext4_inode_is_fast_symlink(struct inode *inode)
66
{
67
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 69 70 71 72 73 74 75 76 77 78
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
79
	ext4_lblk_t needed;
80 81 82 83 84 85

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
86
	 * like a regular file for ext4 to try to delete it.  Things
87 88 89 90 91 92 93
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
94 95
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
96

97
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

114
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 116 117
	if (!IS_ERR(result))
		return result;

118
	ext4_std_error(inode->i_sb, PTR_ERR(result));
119 120 121 122 123 124 125 126 127 128 129
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
130 131 132
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133
		return 0;
134
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 136 137 138 139 140 141 142 143
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
144
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145
				 int nblocks)
146
{
147 148 149 150 151 152 153 154
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
155
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156
	jbd_debug(2, "restarting handle %p\n", handle);
157 158 159
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
160
	ext4_discard_preallocations(inode);
161 162

	return ret;
163 164 165 166 167
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
168
void ext4_delete_inode(struct inode *inode)
169 170
{
	handle_t *handle;
171
	int err;
172

173 174 175
	if (!is_bad_inode(inode))
		vfs_dq_init(inode);

176 177
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
178 179 180 181 182
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

183
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
184
	if (IS_ERR(handle)) {
185
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
186 187 188 189 190
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
191
		ext4_orphan_del(NULL, inode);
192 193 194 195
		goto no_delete;
	}

	if (IS_SYNC(inode))
196
		ext4_handle_sync(handle);
197
	inode->i_size = 0;
198 199 200 201 202 203
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
204
	if (inode->i_blocks)
205
		ext4_truncate(inode);
206 207 208 209 210 211 212

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
213
	if (!ext4_handle_has_enough_credits(handle, 3)) {
214 215 216 217 218 219 220 221 222 223 224 225
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

226
	/*
227
	 * Kill off the orphan record which ext4_truncate created.
228
	 * AKPM: I think this can be inside the above `if'.
229
	 * Note that ext4_orphan_del() has to be able to cope with the
230
	 * deletion of a non-existent orphan - this is because we don't
231
	 * know if ext4_truncate() actually created an orphan record.
232 233
	 * (Well, we could do this if we need to, but heck - it works)
	 */
234 235
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
236 237 238 239 240 241 242 243

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
244
	if (ext4_mark_inode_dirty(handle, inode))
245 246 247
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
248 249
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
268
 *	ext4_block_to_path - parse the block number into array of offsets
269 270 271
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
272 273
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
274
 *
275
 *	To store the locations of file's data ext4 uses a data structure common
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

298
static int ext4_block_to_path(struct inode *inode,
299 300
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
301
{
302 303 304
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
305 306 307 308 309
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

310
	if (i_block < direct_blocks) {
311 312
		offsets[n++] = i_block;
		final = direct_blocks;
313
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
314
		offsets[n++] = EXT4_IND_BLOCK;
315 316 317
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
318
		offsets[n++] = EXT4_DIND_BLOCK;
319 320 321 322
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
323
		offsets[n++] = EXT4_TIND_BLOCK;
324 325 326 327 328
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
329
		ext4_warning(inode->i_sb, "ext4_block_to_path",
330 331 332
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
333 334 335 336 337 338
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

339
static int __ext4_check_blockref(const char *function, struct inode *inode,
340 341
				 __le32 *p, unsigned int max)
{
342
	__le32 *bref = p;
343 344
	unsigned int blk;

345
	while (bref < p+max) {
346
		blk = le32_to_cpu(*bref++);
347 348
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
349
						    blk, 1))) {
350
			ext4_error(inode->i_sb, function,
351 352
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
353 354 355 356
			return -EIO;
		}
	}
	return 0;
357 358 359 360
}


#define ext4_check_indirect_blockref(inode, bh)                         \
361
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
362 363 364
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
365
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
366 367
			      EXT4_NDIR_BLOCKS)

368
/**
369
 *	ext4_get_branch - read the chain of indirect blocks leading to data
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
394 395
 *
 *      Need to be called with
396
 *      down_read(&EXT4_I(inode)->i_data_sem)
397
 */
A
Aneesh Kumar K.V 已提交
398 399
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
400 401 402 403 404 405 406 407
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
408
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 410 411
	if (!p->key)
		goto no_block;
	while (--depth) {
412 413
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
414
			goto failure;
415

416 417 418 419 420 421 422 423 424 425 426
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
427

428
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 430 431 432 433 434 435 436 437 438 439 440 441
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
442
 *	ext4_find_near - find a place for allocation with sufficient locality
443 444 445
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
446
 *	This function returns the preferred place for block allocation.
447 448 449 450 451 452 453 454 455 456 457 458 459 460
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
461
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462
{
463
	struct ext4_inode_info *ei = EXT4_I(inode);
464
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465
	__le32 *p;
466
	ext4_fsblk_t bg_start;
467
	ext4_fsblk_t last_block;
468
	ext4_grpblk_t colour;
469 470
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
486 487 488 489 490 491 492
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 494
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

495 496 497 498 499 500 501
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

502 503
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
504
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 506
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 508 509 510
	return bg_start + colour;
}

/**
511
 *	ext4_find_goal - find a preferred place for allocation.
512 513 514 515
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
516
 *	Normally this function find the preferred place for block allocation,
517
 *	returns it.
518 519
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
520
 */
A
Aneesh Kumar K.V 已提交
521
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522
				   Indirect *partial)
523
{
524 525
	ext4_fsblk_t goal;

526
	/*
527
	 * XXX need to get goal block from mballoc's data structures
528 529
	 */

530 531 532
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
533 534 535
}

/**
536
 *	ext4_blks_to_allocate: Look up the block map and count the number
537 538 539 540 541 542 543 544 545 546
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
547
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548
				 int blocks_to_boundary)
549
{
550
	unsigned int count = 0;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
574
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 576 577 578 579 580 581 582
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
583
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 585 586
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
587
{
588
	struct ext4_allocation_request ar;
589
	int target, i;
590
	unsigned long count = 0, blk_allocated = 0;
591
	int index = 0;
592
	ext4_fsblk_t current_block = 0;
593 594 595 596 597 598 599 600 601 602
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
603 604 605
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
606 607
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
608 609
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
610 611 612
		if (*err)
			goto failed_out;

613 614
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

615 616 617 618 619 620
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
621 622 623 624 625 626 627 628 629
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
630
			break;
631
		}
632 633
	}

634 635 636 637 638
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
639 640 641 642 643 644 645 646 647 648
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
649
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
650

651 652 653 654 655 656 657 658 659
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
660 661 662 663
			/*
			 * save the new block number
			 * for the first direct block
			 */
664 665
			new_blocks[index] = current_block;
		}
666
		blk_allocated += ar.len;
667 668
	}
allocated:
669
	/* total number of blocks allocated for direct blocks */
670
	ret = blk_allocated;
671 672 673
	*err = 0;
	return ret;
failed_out:
674
	for (i = 0; i < index; i++)
675
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
676 677 678 679
	return ret;
}

/**
680
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
681 682 683 684 685 686 687 688 689 690
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
691
 *	the same format as ext4_get_branch() would do. We are calling it after
692 693
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
694
 *	picture as after the successful ext4_get_block(), except that in one
695 696 697 698 699 700
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
701
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
702 703
 *	as described above and return 0.
 */
704
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
705 706 707
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
708 709 710 711 712 713
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
714 715
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
716

717
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
736
		err = ext4_journal_get_create_access(handle, bh);
737
		if (err) {
738 739
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
740 741 742 743 744 745 746 747
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
748
		if (n == indirect_blks) {
749 750 751 752 753 754
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
755
			for (i = 1; i < num; i++)
756 757 758 759 760 761
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

762 763
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
764 765 766 767 768 769 770
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
771
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
772
	for (i = 1; i <= n ; i++) {
773
		/* 
774 775 776
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
777
		 */
778 779
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
780
	}
781 782
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
783

784
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
785 786 787 788 789

	return err;
}

/**
790
 * ext4_splice_branch - splice the allocated branch onto inode.
791 792 793
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
794
 *	ext4_alloc_branch)
795 796 797 798 799 800 801 802
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
803
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
804 805
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
806 807 808
{
	int i;
	int err = 0;
809
	ext4_fsblk_t current_block;
810 811 812 813 814 815 816 817

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
818
		err = ext4_journal_get_write_access(handle, where->bh);
819 820 821 822 823 824 825 826 827 828 829 830 831 832
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
833
			*(where->p + i) = cpu_to_le32(current_block++);
834 835 836 837 838 839 840 841 842 843 844
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
845
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
846 847
		 */
		jbd_debug(5, "splicing indirect only\n");
848 849
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
850 851 852 853 854 855
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
856
		ext4_mark_inode_dirty(handle, inode);
857 858 859 860 861 862
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
863
		/* 
864 865 866
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
867
		 */
868 869
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
870
	}
871 872
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
873 874 875 876 877

	return err;
}

/*
878 879 880 881
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
898
 *
899 900 901 902 903
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
904
 */
905
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
906 907 908
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
909 910
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
911
	ext4_lblk_t offsets[4];
912 913
	Indirect chain[4];
	Indirect *partial;
914
	ext4_fsblk_t goal;
915 916 917 918
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
919
	ext4_fsblk_t first_block = 0;
920

A
Alex Tomas 已提交
921
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
922
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
923
	depth = ext4_block_to_path(inode, iblock, offsets,
924
				   &blocks_to_boundary);
925 926 927 928

	if (depth == 0)
		goto out;

929
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
930 931 932 933 934 935 936 937

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
938
			ext4_fsblk_t blk;
939 940 941 942 943 944 945 946

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
947
		goto got_it;
948 949 950
	}

	/* Next simple case - plain lookup or failed read of indirect block */
951
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
952 953 954
		goto cleanup;

	/*
955
	 * Okay, we need to do block allocation.
956
	*/
957
	goal = ext4_find_goal(inode, iblock, partial);
958 959 960 961 962 963 964 965

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
966
	count = ext4_blks_to_allocate(partial, indirect_blks,
967 968
					maxblocks, blocks_to_boundary);
	/*
969
	 * Block out ext4_truncate while we alter the tree
970
	 */
971
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
972 973
				&count, goal,
				offsets + (partial - chain), partial);
974 975

	/*
976
	 * The ext4_splice_branch call will free and forget any buffers
977 978 979 980 981 982
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
983
		err = ext4_splice_branch(handle, inode, iblock,
984
					 partial, indirect_blks, count);
985
	if (err)
986 987 988
		goto cleanup;

	set_buffer_new(bh_result);
989 990

	ext4_update_inode_fsync_trans(handle, inode, 1);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1009 1010
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1011
{
1012
	return &EXT4_I(inode)->i_reserved_quota;
1013
}
1014
#endif
1015

1016 1017
/*
 * Calculate the number of metadata blocks need to reserve
1018
 * to allocate a new block at @lblocks for non extent file based file
1019
 */
1020 1021
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1022
{
1023 1024 1025
	struct ext4_inode_info *ei = EXT4_I(inode);
	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
	int blk_bits;
1026

1027 1028
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1029

1030
	lblock -= EXT4_NDIR_BLOCKS;
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
	blk_bits = roundup_pow_of_two(lblock + 1);
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1041 1042 1043 1044
}

/*
 * Calculate the number of metadata blocks need to reserve
1045
 * to allocate a block located at @lblock
1046
 */
1047
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1048 1049
{
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1050
		return ext4_ext_calc_metadata_amount(inode, lblock);
1051

1052
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1053 1054
}

1055 1056 1057 1058
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1059 1060
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1061 1062
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1063
	struct ext4_inode_info *ei = EXT4_I(inode);
1064
	int mdb_free = 0, allocated_meta_blocks = 0;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	spin_lock(&ei->i_block_reservation_lock);
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1075

1076 1077 1078 1079
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	used += ei->i_allocated_meta_blocks;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1080
	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1081 1082
	ei->i_allocated_meta_blocks = 0;
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1083

1084 1085 1086 1087 1088 1089
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1090 1091
		mdb_free = ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1092
		ei->i_da_metadata_calc_len = 0;
1093 1094
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
	}
1095
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1096

1097
	/* Update quota subsystem */
1098
	if (quota_claim) {
1099
		dquot_claim_block(inode, used);
1100
		if (mdb_free)
1101
			dquot_release_reservation_block(inode, mdb_free);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	} else {
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
		 * not update the quota for allocated blocks. But then
		 * converting an fallocate region to initialized region would
		 * have caused a metadata allocation. So claim quota for
		 * that
		 */
		if (allocated_meta_blocks)
1112 1113
			dquot_claim_block(inode, allocated_meta_blocks);
		dquot_release_reservation_block(inode, mdb_free + used);
1114
	}
1115 1116 1117 1118 1119 1120

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1121 1122
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1123
		ext4_discard_preallocations(inode);
1124 1125
}

1126 1127
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1128 1129
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1130
		ext4_error(inode->i_sb, msg,
1131 1132 1133 1134 1135 1136 1137 1138 1139
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1140
/*
1141 1142
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1176 1177 1178 1179 1180 1181 1182 1183 1184
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1198
/*
1199
 * The ext4_get_blocks() function tries to look up the requested blocks,
1200
 * and returns if the blocks are already mapped.
1201 1202 1203 1204 1205 1206
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1207
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1220 1221
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1222
		    int flags)
1223 1224
{
	int retval;
1225 1226

	clear_buffer_mapped(bh);
1227
	clear_buffer_unwritten(bh);
1228

1229 1230 1231
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1232
	/*
1233 1234
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1235 1236 1237 1238
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1239
				bh, 0);
1240
	} else {
1241
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1242
					     bh, 0);
1243
	}
1244
	up_read((&EXT4_I(inode)->i_data_sem));
1245

1246
	if (retval > 0 && buffer_mapped(bh)) {
1247 1248
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1249 1250 1251 1252
		if (ret != 0)
			return ret;
	}

1253
	/* If it is only a block(s) look up */
1254
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1265 1266
		return retval;

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1279
	/*
1280 1281 1282 1283
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1284 1285
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1286 1287 1288 1289 1290 1291 1292

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1293
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1294
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1295 1296 1297 1298
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1299 1300
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1301
					      bh, flags);
1302
	} else {
1303
		retval = ext4_ind_get_blocks(handle, inode, block,
1304
					     max_blocks, bh, flags);
1305 1306 1307 1308 1309 1310 1311

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1312
			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1313
		}
1314

1315 1316 1317 1318 1319 1320 1321
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1322
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1323 1324
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1325
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1327

1328
	up_write((&EXT4_I(inode)->i_data_sem));
1329
	if (retval > 0 && buffer_mapped(bh)) {
1330 1331 1332
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1333 1334 1335
		if (ret != 0)
			return ret;
	}
1336 1337 1338
	return retval;
}

1339 1340 1341
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1342 1343
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1344
{
1345
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1346
	int ret = 0, started = 0;
1347
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1348
	int dio_credits;
1349

J
Jan Kara 已提交
1350 1351 1352 1353
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1354 1355
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1356
		if (IS_ERR(handle)) {
1357
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1358
			goto out;
1359
		}
J
Jan Kara 已提交
1360
		started = 1;
1361 1362
	}

1363
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1364
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1365 1366 1367
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1368
	}
J
Jan Kara 已提交
1369 1370 1371
	if (started)
		ext4_journal_stop(handle);
out:
1372 1373 1374 1375 1376 1377
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1378
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1379
				ext4_lblk_t block, int create, int *errp)
1380 1381 1382
{
	struct buffer_head dummy;
	int fatal = 0, err;
1383
	int flags = 0;
1384 1385 1386 1387 1388 1389

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1390 1391 1392
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1393
	/*
1394 1395
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1412
			J_ASSERT(handle != NULL);
1413 1414 1415 1416 1417

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1418
			 * writes use ext4_get_block instead, so it's not a
1419 1420 1421 1422
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1423
			fatal = ext4_journal_get_create_access(handle, bh);
1424
			if (!fatal && !buffer_uptodate(bh)) {
1425
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1426 1427 1428
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1429 1430
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1447
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1448
			       ext4_lblk_t block, int create, int *err)
1449
{
1450
	struct buffer_head *bh;
1451

1452
	bh = ext4_getblk(handle, inode, block, create, err);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1466 1467 1468 1469 1470 1471 1472
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1473 1474 1475 1476 1477 1478 1479
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1480 1481
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1482
	     block_start = block_end, bh = next) {
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1500
 * close off a transaction and start a new one between the ext4_get_block()
1501
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1502 1503
 * prepare_write() is the right place.
 *
1504 1505
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1506 1507 1508 1509
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1510
 * By accident, ext4 can be reentered when a transaction is open via
1511 1512 1513 1514 1515 1516
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1517
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1518 1519 1520 1521 1522
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1523
				       struct buffer_head *bh)
1524 1525 1526
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1527
	return ext4_journal_get_write_access(handle, bh);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

N
Nick Piggin 已提交
1540
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1541 1542
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1543
{
1544
	struct inode *inode = mapping->host;
1545
	int ret, needed_blocks;
1546 1547
	handle_t *handle;
	int retries = 0;
1548
	struct page *page;
1549
	pgoff_t index;
1550
	unsigned from, to;
N
Nick Piggin 已提交
1551

1552
	trace_ext4_write_begin(inode, pos, len, flags);
1553 1554 1555 1556 1557
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1558
	index = pos >> PAGE_CACHE_SHIFT;
1559 1560
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1561 1562

retry:
1563 1564 1565 1566
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1567
	}
1568

1569 1570 1571 1572
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1573
	page = grab_cache_page_write_begin(mapping, index, flags);
1574 1575 1576 1577 1578 1579 1580
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1581
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1582
				ext4_get_block);
N
Nick Piggin 已提交
1583 1584

	if (!ret && ext4_should_journal_data(inode)) {
1585 1586 1587
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1588 1589

	if (ret) {
1590 1591
		unlock_page(page);
		page_cache_release(page);
1592 1593 1594 1595
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1596 1597 1598
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1599
		 */
1600
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1601 1602 1603 1604
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1605
			ext4_truncate_failed_write(inode);
1606
			/*
1607
			 * If truncate failed early the inode might
1608 1609 1610 1611 1612 1613 1614
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1615 1616
	}

1617
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1618
		goto retry;
1619
out:
1620 1621 1622
	return ret;
}

N
Nick Piggin 已提交
1623 1624
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1625 1626 1627 1628
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1629
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1630 1631
}

1632
static int ext4_generic_write_end(struct file *file,
1633 1634 1635
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1678 1679 1680 1681
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1682
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1683 1684
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1685
static int ext4_ordered_write_end(struct file *file,
1686 1687 1688
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1689
{
1690
	handle_t *handle = ext4_journal_current_handle();
1691
	struct inode *inode = mapping->host;
1692 1693
	int ret = 0, ret2;

1694
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1695
	ret = ext4_jbd2_file_inode(handle, inode);
1696 1697

	if (ret == 0) {
1698
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1699
							page, fsdata);
1700
		copied = ret2;
1701
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1702 1703 1704 1705 1706
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1707 1708
		if (ret2 < 0)
			ret = ret2;
1709
	}
1710
	ret2 = ext4_journal_stop(handle);
1711 1712
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1713

1714
	if (pos + len > inode->i_size) {
1715
		ext4_truncate_failed_write(inode);
1716
		/*
1717
		 * If truncate failed early the inode might still be
1718 1719 1720 1721 1722 1723 1724 1725
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1726
	return ret ? ret : copied;
1727 1728
}

N
Nick Piggin 已提交
1729
static int ext4_writeback_write_end(struct file *file,
1730 1731 1732
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1733
{
1734
	handle_t *handle = ext4_journal_current_handle();
1735
	struct inode *inode = mapping->host;
1736 1737
	int ret = 0, ret2;

1738
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1739
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1740
							page, fsdata);
1741
	copied = ret2;
1742
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1743 1744 1745 1746 1747 1748
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1749 1750
	if (ret2 < 0)
		ret = ret2;
1751

1752
	ret2 = ext4_journal_stop(handle);
1753 1754
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1755

1756
	if (pos + len > inode->i_size) {
1757
		ext4_truncate_failed_write(inode);
1758
		/*
1759
		 * If truncate failed early the inode might still be
1760 1761 1762 1763 1764 1765 1766
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1767
	return ret ? ret : copied;
1768 1769
}

N
Nick Piggin 已提交
1770
static int ext4_journalled_write_end(struct file *file,
1771 1772 1773
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1774
{
1775
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1776
	struct inode *inode = mapping->host;
1777 1778
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1779
	unsigned from, to;
1780
	loff_t new_i_size;
1781

1782
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1783 1784 1785 1786 1787 1788 1789 1790
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1791 1792

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1793
				to, &partial, write_end_fn);
1794 1795
	if (!partial)
		SetPageUptodate(page);
1796 1797
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1798
		i_size_write(inode, pos+copied);
1799
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1800 1801
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1802
		ret2 = ext4_mark_inode_dirty(handle, inode);
1803 1804 1805
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1806

1807
	unlock_page(page);
1808
	page_cache_release(page);
1809
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1810 1811 1812 1813 1814 1815
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1816
	ret2 = ext4_journal_stop(handle);
1817 1818
	if (!ret)
		ret = ret2;
1819
	if (pos + len > inode->i_size) {
1820
		ext4_truncate_failed_write(inode);
1821
		/*
1822
		 * If truncate failed early the inode might still be
1823 1824 1825 1826 1827 1828
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1829 1830

	return ret ? ret : copied;
1831
}
1832

1833 1834 1835 1836
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1837
{
A
Aneesh Kumar K.V 已提交
1838
	int retries = 0;
1839
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1840
	struct ext4_inode_info *ei = EXT4_I(inode);
1841
	unsigned long md_needed, md_reserved;
1842
	int ret;
1843 1844 1845 1846 1847 1848

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1849
repeat:
1850 1851
	spin_lock(&ei->i_block_reservation_lock);
	md_reserved = ei->i_reserved_meta_blocks;
1852
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1853
	spin_unlock(&ei->i_block_reservation_lock);
1854

1855 1856 1857 1858 1859
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
1860 1861 1862
	ret = dquot_reserve_block(inode, md_needed + 1);
	if (ret)
		return ret;
1863

1864
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1865
		dquot_release_reservation_block(inode, md_needed + 1);
A
Aneesh Kumar K.V 已提交
1866 1867 1868 1869
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1870 1871
		return -ENOSPC;
	}
1872
	spin_lock(&ei->i_block_reservation_lock);
1873
	ei->i_reserved_data_blocks++;
1874 1875
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1876

1877 1878 1879
	return 0;       /* success */
}

1880
static void ext4_da_release_space(struct inode *inode, int to_free)
1881 1882
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1883
	struct ext4_inode_info *ei = EXT4_I(inode);
1884

1885 1886 1887
	if (!to_free)
		return;		/* Nothing to release, exit */

1888
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1889

1890
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1891
		/*
1892 1893 1894 1895
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1896
		 */
1897 1898 1899 1900 1901 1902
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1903
	}
1904
	ei->i_reserved_data_blocks -= to_free;
1905

1906 1907 1908 1909 1910 1911
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1912 1913
		to_free += ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1914
		ei->i_da_metadata_calc_len = 0;
1915
	}
1916

1917 1918
	/* update fs dirty blocks counter */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1919 1920

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1921

1922
	dquot_release_reservation_block(inode, to_free);
1923 1924 1925
}

static void ext4_da_page_release_reservation(struct page *page,
1926
					     unsigned long offset)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1943
	ext4_da_release_space(page->mapping->host, to_release);
1944
}
1945

1946 1947 1948 1949 1950 1951
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1952
 * them with writepage() call back
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1965
	long pages_skipped;
1966 1967 1968 1969 1970
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1971 1972

	BUG_ON(mpd->next_page <= mpd->first_page);
1973 1974 1975
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1976
	 * If we look at mpd->b_blocknr we would only be looking
1977 1978
	 * at the currently mapped buffer_heads.
	 */
1979 1980 1981
	index = mpd->first_page;
	end = mpd->next_page - 1;

1982
	pagevec_init(&pvec, 0);
1983
	while (index <= end) {
1984
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1985 1986 1987 1988 1989
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1990 1991 1992 1993 1994 1995 1996 1997
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1998
			pages_skipped = mpd->wbc->pages_skipped;
1999
			err = mapping->a_ops->writepage(page, mpd->wbc);
2000 2001 2002 2003 2004
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2005
				mpd->pages_written++;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2028
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2029 2030 2031 2032 2033 2034 2035 2036 2037
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2038
	pgoff_t index, end;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2096
				} else if (buffer_mapped(bh))
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2156 2157 2158
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2171 2172 2173
	return;
}

2174 2175 2176
/*
 * mpage_da_map_blocks - go through given space
 *
2177
 * @mpd - bh describing space
2178 2179 2180 2181
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2182
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2183
{
2184
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2185
	struct buffer_head new;
2186 2187 2188 2189
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2190 2191 2192 2193

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2194
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2195 2196
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2197
		return 0;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2208
	/*
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2225
	 */
2226
	new.b_state = 0;
2227
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2228
	if (mpd->b_state & (1 << BH_Delay))
2229 2230
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2231
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2232
			       &new, get_blocks_flags);
2233 2234
	if (blks < 0) {
		err = blks;
2235 2236 2237 2238
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2239 2240 2241
		 */
		if (err == -EAGAIN)
			return 0;
2242 2243

		if (err == -ENOSPC &&
2244
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2245 2246 2247 2248
			mpd->retval = err;
			return 0;
		}

2249
		/*
2250 2251 2252 2253 2254
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2255
		 */
2256 2257 2258 2259 2260 2261 2262 2263
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2264
		if (err == -ENOSPC) {
2265
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2266
		}
2267
		/* invalidate all the pages */
2268
		ext4_da_block_invalidatepages(mpd, next,
2269
				mpd->b_size >> mpd->inode->i_blkbits);
2270 2271
		return err;
	}
2272 2273 2274
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2275

2276 2277
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2278

2279 2280 2281 2282
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2283 2284
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2285
		mpage_put_bnr_to_bhs(mpd, next, &new);
2286

2287 2288 2289 2290 2291 2292 2293
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2294
	 * Update on-disk size along with block allocation.
2295 2296 2297 2298 2299 2300 2301 2302 2303
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2304
	return 0;
2305 2306
}

2307 2308
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2320 2321
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2322 2323
{
	sector_t next;
2324
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2348 2349 2350
	/*
	 * First block in the extent
	 */
2351 2352 2353 2354
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2355 2356 2357
		return;
	}

2358
	next = mpd->b_blocknr + nrblocks;
2359 2360 2361
	/*
	 * Can we merge the block to our big extent?
	 */
2362 2363
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2364 2365 2366
		return;
	}

2367
flush_it:
2368 2369 2370 2371
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2372 2373
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2374 2375
	mpd->io_done = 1;
	return;
2376 2377
}

2378
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2379
{
2380
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2397
	struct buffer_head *bh, *head;
2398 2399
	sector_t logical;

2400 2401 2402 2403
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2404
		 * try to write them again after
2405 2406 2407 2408 2409 2410
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2411 2412 2413 2414 2415 2416
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2417
		 * and start IO on them using writepage()
2418 2419
		 */
		if (mpd->next_page != mpd->first_page) {
2420 2421
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2422 2423 2424 2425 2426 2427 2428
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2439 2440 2441
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2442 2443 2444 2445 2446 2447 2448
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2449 2450
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2451 2452
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2453 2454 2455 2456 2457 2458 2459 2460
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2461 2462 2463 2464
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2465
			 * with the page in ext4_writepage
2466
			 */
2467
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2468 2469 2470
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2471 2472
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2473 2474 2475 2476 2477 2478 2479 2480 2481
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2482 2483
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2484
			}
2485 2486 2487 2488 2489 2490 2491 2492
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2493 2494 2495
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2496 2497 2498 2499 2500 2501 2502
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2503 2504 2505 2506 2507
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2508 2509 2510 2511
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2512 2513 2514 2515 2516 2517 2518 2519 2520

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2521
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2522 2523
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2524 2525 2526 2527
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2528
		ret = ext4_da_reserve_space(inode, iblock);
2529 2530 2531 2532
		if (ret)
			/* not enough space to reserve */
			return ret;

2533
		map_bh(bh_result, inode->i_sb, invalid_block);
2534 2535 2536 2537
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2538 2539 2540 2541 2542 2543 2544 2545
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2546
			set_buffer_new(bh_result);
2547 2548
			set_buffer_mapped(bh_result);
		}
2549 2550 2551 2552 2553
		ret = 0;
	}

	return ret;
}
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2572 2573 2574 2575 2576
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2577 2578
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2579 2580 2581 2582
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2583
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2584 2585 2586 2587 2588
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2589 2590
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2643
/*
2644 2645 2646 2647 2648 2649 2650 2651 2652
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2653 2654 2655 2656 2657
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2683
 */
2684
static int ext4_writepage(struct page *page,
2685
			  struct writeback_control *wbc)
2686 2687
{
	int ret = 0;
2688
	loff_t size;
2689
	unsigned int len;
2690 2691 2692
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2693
	trace_ext4_writepage(inode, page);
2694 2695 2696 2697 2698
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2699

2700
	if (page_has_buffers(page)) {
2701
		page_bufs = page_buffers(page);
2702
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2703
					ext4_bh_delay_or_unwritten)) {
2704
			/*
2705 2706
			 * We don't want to do  block allocation
			 * So redirty the page and return
2707 2708 2709
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2730
		ret = block_prepare_write(page, 0, len,
2731
					  noalloc_get_block_write);
2732 2733 2734 2735
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2736
						ext4_bh_delay_or_unwritten)) {
2737 2738 2739 2740 2741 2742 2743 2744 2745
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2746 2747 2748 2749 2750
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2751
		/* now mark the buffer_heads as dirty and uptodate */
2752
		block_commit_write(page, 0, len);
2753 2754
	}

2755 2756 2757 2758 2759 2760
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2761
		return __ext4_journalled_writepage(page, len);
2762 2763
	}

2764
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2765
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2766
	else
2767 2768
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2769 2770 2771 2772

	return ret;
}

2773
/*
2774 2775 2776 2777 2778
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2779
 */
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2791
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2792 2793 2794 2795 2796
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2797

2798
static int ext4_da_writepages(struct address_space *mapping,
2799
			      struct writeback_control *wbc)
2800
{
2801 2802
	pgoff_t	index;
	int range_whole = 0;
2803
	handle_t *handle = NULL;
2804
	struct mpage_da_data mpd;
2805
	struct inode *inode = mapping->host;
2806
	int no_nrwrite_index_update;
2807 2808
	int pages_written = 0;
	long pages_skipped;
2809
	unsigned int max_pages;
2810
	int range_cyclic, cycled = 1, io_done = 0;
2811 2812
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2813
	loff_t range_start = wbc->range_start;
2814
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2815

2816
	trace_ext4_da_writepages(inode, wbc);
2817

2818 2819 2820 2821 2822
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2823
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2824
		return 0;
2825 2826 2827 2828 2829

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2830
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2831 2832 2833 2834 2835
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2836
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2837 2838
		return -EROFS;

2839 2840
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2841

2842 2843
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2844
		index = mapping->writeback_index;
2845 2846 2847 2848 2849 2850
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2851
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2883 2884 2885
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2894
retry:
2895
	while (!ret && wbc->nr_to_write > 0) {
2896 2897 2898 2899 2900 2901 2902 2903

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2904
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2905

2906 2907 2908 2909
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2910
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2911 2912
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2913 2914
			goto out_writepages;
		}
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
2936
		 * If we have a contiguous extent of pages and we
2937 2938 2939 2940 2941 2942 2943 2944 2945
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2946
		trace_ext4_da_write_pages(inode, &mpd);
2947
		wbc->nr_to_write -= mpd.pages_written;
2948

2949
		ext4_journal_stop(handle);
2950

2951
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2952 2953 2954 2955
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2956
			jbd2_journal_force_commit_nested(sbi->s_journal);
2957 2958 2959
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2960 2961 2962 2963
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2964 2965
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2966
			ret = 0;
2967
			io_done = 1;
2968
		} else if (wbc->nr_to_write)
2969 2970 2971 2972 2973 2974
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2975
	}
2976 2977 2978 2979 2980 2981 2982
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2983
	if (pages_skipped != wbc->pages_skipped)
2984 2985 2986 2987
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
2988 2989 2990

	/* Update index */
	index += pages_written;
2991
	wbc->range_cyclic = range_cyclic;
2992 2993 2994 2995 2996 2997
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2998

2999
out_writepages:
3000 3001
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
3002
	wbc->nr_to_write -= nr_to_writebump;
3003
	wbc->range_start = range_start;
3004
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3005
	return ret;
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3017
	 * counters can get slightly wrong with percpu_counter_batch getting
3018 3019 3020 3021 3022 3023 3024 3025 3026
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3027 3028
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3029 3030 3031
		 */
		return 1;
	}
3032 3033 3034 3035 3036 3037 3038
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3039 3040 3041
	return 0;
}

3042
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3043 3044
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3045
{
3046
	int ret, retries = 0, quota_retries = 0;
3047 3048 3049 3050 3051 3052 3053 3054 3055
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3056 3057 3058 3059 3060 3061 3062

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3063
	trace_ext4_da_write_begin(inode, pos, len, flags);
3064
retry:
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3076 3077 3078
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3079

3080
	page = grab_cache_page_write_begin(mapping, index, flags);
3081 3082 3083 3084 3085
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3086 3087 3088
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3089
				ext4_da_get_block_prep);
3090 3091 3092 3093
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3094 3095 3096 3097 3098 3099
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3100
			ext4_truncate_failed_write(inode);
3101 3102
	}

3103 3104
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

	if ((ret == -EDQUOT) &&
	    EXT4_I(inode)->i_reserved_meta_blocks &&
	    (quota_retries++ < 3)) {
		/*
		 * Since we often over-estimate the number of meta
		 * data blocks required, we may sometimes get a
		 * spurios out of quota error even though there would
		 * be enough space once we write the data blocks and
		 * find out how many meta data blocks were _really_
		 * required.  So try forcing the inode write to see if
		 * that helps.
		 */
		write_inode_now(inode, (quota_retries == 3));
		goto retry;
	}
3121 3122 3123 3124
out:
	return ret;
}

3125 3126 3127 3128 3129
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3130
					    unsigned long offset)
3131 3132 3133 3134 3135 3136 3137 3138 3139
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3140
	for (i = 0; i < idx; i++)
3141 3142
		bh = bh->b_this_page;

3143
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3144 3145 3146 3147
		return 0;
	return 1;
}

3148
static int ext4_da_write_end(struct file *file,
3149 3150 3151
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3152 3153 3154 3155 3156
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3157
	unsigned long start, end;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3171

3172
	trace_ext4_da_write_end(inode, pos, len, copied);
3173
	start = pos & (PAGE_CACHE_SIZE - 1);
3174
	end = start + copied - 1;
3175 3176 3177 3178 3179 3180 3181 3182

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3194

3195 3196 3197
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3198 3199 3200 3201 3202
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3203
		}
3204
	}
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3226
	ext4_da_page_release_reservation(page, offset);
3227 3228 3229 3230 3231 3232 3233

out:
	ext4_invalidatepage(page, offset);

	return;
}

3234 3235 3236 3237 3238
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3239 3240
	trace_ext4_alloc_da_blocks(inode);

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3251
	 *
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3271
	 *
3272 3273 3274 3275 3276 3277
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3278

3279 3280 3281 3282 3283
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3284
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3285 3286 3287 3288 3289 3290 3291 3292
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3293
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3294 3295 3296 3297 3298
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3309
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3321
		 * NB. EXT4_STATE_JDATA is not set on files other than
3322 3323 3324 3325 3326 3327
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3328 3329
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3330 3331 3332
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3333 3334 3335 3336 3337

		if (err)
			return 0;
	}

3338
	return generic_block_bmap(mapping, block, ext4_get_block);
3339 3340
}

3341
static int ext4_readpage(struct file *file, struct page *page)
3342
{
3343
	return mpage_readpage(page, ext4_get_block);
3344 3345 3346
}

static int
3347
ext4_readpages(struct file *file, struct address_space *mapping,
3348 3349
		struct list_head *pages, unsigned nr_pages)
{
3350
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3351 3352
}

3353
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3354
{
3355
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3356 3357 3358 3359 3360 3361 3362

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3363 3364 3365 3366
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3367 3368
}

3369
static int ext4_releasepage(struct page *page, gfp_t wait)
3370
{
3371
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3372 3373 3374 3375

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3376 3377 3378 3379
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3380 3381 3382
}

/*
3383 3384
 * O_DIRECT for ext3 (or indirect map) based files
 *
3385 3386 3387 3388 3389
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3390 3391
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3392
 */
3393
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3394 3395
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3396 3397 3398
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3399
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3400
	handle_t *handle;
3401 3402 3403
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3404
	int retries = 0;
3405 3406 3407 3408 3409

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3410 3411 3412 3413 3414 3415
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3416
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3417 3418 3419 3420
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3421 3422
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3423
			ext4_journal_stop(handle);
3424 3425 3426
		}
	}

3427
retry:
3428 3429
	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3430
				 ext4_get_block, NULL);
3431 3432
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3433

J
Jan Kara 已提交
3434
	if (orphan) {
3435 3436
		int err;

J
Jan Kara 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3447
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3448
		if (ret > 0) {
3449 3450 3451 3452 3453 3454 3455 3456
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3457
				 * ext4_mark_inode_dirty() to userspace.  So
3458 3459
				 * ignore it.
				 */
3460
				ext4_mark_inode_dirty(handle, inode);
3461 3462
			}
		}
3463
		err = ext4_journal_stop(handle);
3464 3465 3466 3467 3468 3469 3470
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3471 3472 3473 3474 3475 3476 3477 3478
static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
{
	handle_t *handle = NULL;
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;

3479 3480
	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
		   inode->i_ino, create);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	/*
	 * DIO VFS code passes create = 0 flag for write to
	 * the middle of file. It does this to avoid block
	 * allocation for holes, to prevent expose stale data
	 * out when there is parallel buffered read (which does
	 * not hold the i_mutex lock) while direct IO write has
	 * not completed. DIO request on holes finally falls back
	 * to buffered IO for this reason.
	 *
	 * For ext4 extent based file, since we support fallocate,
	 * new allocated extent as uninitialized, for holes, we
	 * could fallocate blocks for holes, thus parallel
	 * buffered IO read will zero out the page when read on
	 * a hole while parallel DIO write to the hole has not completed.
	 *
	 * when we come here, we know it's a direct IO write to
	 * to the middle of file (<i_size)
	 * so it's safe to override the create flag from VFS.
	 */
	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;

	if (max_blocks > DIO_MAX_BLOCKS)
		max_blocks = DIO_MAX_BLOCKS;
	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
	handle = ext4_journal_start(inode, dio_credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	ext4_journal_stop(handle);
out:
	return ret;
}

static void ext4_free_io_end(ext4_io_end_t *io)
{
3523 3524
	BUG_ON(!io);
	iput(io->inode);
3525 3526
	kfree(io);
}
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
static void dump_aio_dio_list(struct inode * inode)
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
		return;
	}

	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
#endif
}
3551 3552 3553 3554

/*
 * check a range of space and convert unwritten extents to written.
 */
3555
static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3556 3557 3558 3559 3560 3561
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
	size_t size = io->size;
	int ret = 0;

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

	if (io->flag != DIO_AIO_UNWRITTEN)
		return ret;

3572 3573 3574
	if (offset + size <= i_size_read(inode))
		ret = ext4_convert_unwritten_extents(inode, offset, size);

3575
	if (ret < 0) {
3576
		printk(KERN_EMERG "%s: failed to convert unwritten"
3577 3578 3579 3580 3581
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3582

3583 3584 3585
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3586
}
3587 3588 3589 3590 3591 3592 3593 3594
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
static void ext4_end_aio_dio_work(struct work_struct *work)
{
	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
	struct inode *inode = io->inode;
	int ret = 0;
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	mutex_lock(&inode->i_mutex);
	ret = ext4_end_aio_dio_nolock(io);
	if (ret >= 0) {
		if (!list_empty(&io->list))
			list_del_init(&io->list);
		ext4_free_io_end(io);
	}
	mutex_unlock(&inode->i_mutex);
}
/*
 * This function is called from ext4_sync_file().
 *
 * When AIO DIO IO is completed, the work to convert unwritten
 * extents to written is queued on workqueue but may not get immediately
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
 * The inode keeps track of a list of completed AIO from DIO path
 * that might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents to written.
 */
int flush_aio_dio_completed_IO(struct inode *inode)
{
	ext4_io_end_t *io;
	int ret = 0;
	int ret2 = 0;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
		return ret;

	dump_aio_dio_list(inode);
	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
				ext4_io_end_t, list);
		/*
		 * Calling ext4_end_aio_dio_nolock() to convert completed
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
		ret = ext4_end_aio_dio_nolock(io);
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
	return (ret2 < 0) ? ret2 : 0;
}

static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3653 3654 3655 3656 3657 3658
{
	ext4_io_end_t *io = NULL;

	io = kmalloc(sizeof(*io), GFP_NOFS);

	if (io) {
3659
		igrab(inode);
3660
		io->inode = inode;
3661
		io->flag = 0;
3662 3663 3664
		io->offset = 0;
		io->size = 0;
		io->error = 0;
3665 3666
		INIT_WORK(&io->work, ext4_end_aio_dio_work);
		INIT_LIST_HEAD(&io->list);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;

3678 3679 3680 3681
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3682 3683 3684 3685 3686 3687 3688 3689 3690
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
	if (io_end->flag != DIO_AIO_UNWRITTEN){
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3691
		return;
3692 3693
	}

3694 3695 3696 3697
	io_end->offset = offset;
	io_end->size = size;
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3698
	/* queue the work to convert unwritten extents to written */
3699 3700
	queue_work(wq, &io_end->work);

3701 3702 3703
	/* Add the io_end to per-inode completed aio dio list*/
	list_add_tail(&io_end->list,
		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	iocb->private = NULL;
}
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3715 3716 3717 3718
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3737 3738 3739
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3740 3741
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3742 3743
		 *
 		 * As to previously fallocated extents, ext4 get_block
3744 3745 3746
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3747 3748 3749 3750 3751 3752 3753 3754
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3755
 		 */
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
			iocb->private = ext4_init_io_end(inode);
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3772 3773 3774 3775 3776
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
					 ext4_get_block_dio_write,
					 ext4_end_io_dio);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3796 3797
		} else if (ret > 0 && (EXT4_I(inode)->i_state &
				       EXT4_STATE_DIO_UNWRITTEN)) {
3798
			int err;
3799 3800 3801 3802
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3803 3804 3805 3806
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3807
			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3808
		}
3809 3810
		return ret;
	}
3811 3812

	/* for write the the end of file case, we fall back to old way */
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3829
/*
3830
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3842
static int ext4_journalled_set_page_dirty(struct page *page)
3843 3844 3845 3846 3847
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3848
static const struct address_space_operations ext4_ordered_aops = {
3849 3850
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3851
	.writepage		= ext4_writepage,
3852 3853 3854 3855 3856 3857 3858 3859 3860
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3861
	.error_remove_page	= generic_error_remove_page,
3862 3863
};

3864
static const struct address_space_operations ext4_writeback_aops = {
3865 3866
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3867
	.writepage		= ext4_writepage,
3868 3869 3870 3871 3872 3873 3874 3875 3876
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3877
	.error_remove_page	= generic_error_remove_page,
3878 3879
};

3880
static const struct address_space_operations ext4_journalled_aops = {
3881 3882
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3883
	.writepage		= ext4_writepage,
3884 3885 3886 3887 3888 3889 3890 3891
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3892
	.error_remove_page	= generic_error_remove_page,
3893 3894
};

3895
static const struct address_space_operations ext4_da_aops = {
3896 3897
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3898
	.writepage		= ext4_writepage,
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3909
	.error_remove_page	= generic_error_remove_page,
3910 3911
};

3912
void ext4_set_aops(struct inode *inode)
3913
{
3914 3915 3916 3917
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3918
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3919 3920 3921
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3922 3923
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3924
	else
3925
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3926 3927 3928
}

/*
3929
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3930 3931 3932 3933
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3934
int ext4_block_truncate_page(handle_t *handle,
3935 3936
		struct address_space *mapping, loff_t from)
{
3937
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3938
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3939 3940
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3941 3942
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3943
	struct page *page;
3944 3945
	int err = 0;

3946 3947
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3948 3949 3950
	if (!page)
		return -EINVAL;

3951 3952 3953 3954 3955 3956 3957 3958 3959
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3960
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3961
		zero_user(page, offset, length);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3986
		ext4_get_block(inode, iblock, bh, 0);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4007
	if (ext4_should_journal_data(inode)) {
4008
		BUFFER_TRACE(bh, "get write access");
4009
		err = ext4_journal_get_write_access(handle, bh);
4010 4011 4012 4013
		if (err)
			goto unlock;
	}

4014
	zero_user(page, offset, length);
4015 4016 4017 4018

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4019
	if (ext4_should_journal_data(inode)) {
4020
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4021
	} else {
4022
		if (ext4_should_order_data(inode))
4023
			err = ext4_jbd2_file_inode(handle, inode);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4047
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4048 4049
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4050
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4051 4052 4053
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4054
 *	This is a helper function used by ext4_truncate().
4055 4056 4057 4058 4059 4060 4061
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4062
 *	past the truncation point is possible until ext4_truncate()
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4081
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4082 4083
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4084 4085 4086 4087 4088
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4089
	/* Make k index the deepest non-null offset + 1 */
4090 4091
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4092
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4103
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4115
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4116 4117 4118 4119 4120 4121
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4122
	while (partial > p) {
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4138
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4139 4140 4141 4142
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
4143 4144
{
	__le32 *p;
4145 4146 4147 4148
	int	flags = EXT4_FREE_BLOCKS_FORGET;

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4149

4150 4151
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4152 4153
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4154
		}
4155
		ext4_mark_inode_dirty(handle, inode);
4156 4157
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4158 4159
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4160
			ext4_journal_get_write_access(handle, bh);
4161 4162 4163
		}
	}

4164 4165
	for (p = first; p < last; p++)
		*p = 0;
4166

4167
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4168 4169 4170
}

/**
4171
 * ext4_free_data - free a list of data blocks
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4189
static void ext4_free_data(handle_t *handle, struct inode *inode,
4190 4191 4192
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4193
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4194 4195 4196 4197
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4198
	ext4_fsblk_t nr;		    /* Current block # */
4199 4200 4201 4202 4203 4204
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4205
		err = ext4_journal_get_write_access(handle, this_bh);
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4223
				ext4_clear_blocks(handle, inode, this_bh,
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4234
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4235 4236 4237
				  count, block_to_free_p, p);

	if (this_bh) {
4238
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4239 4240 4241 4242 4243 4244 4245

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4246
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4247
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4248 4249 4250 4251 4252 4253
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4254 4255 4256 4257
	}
}

/**
4258
 *	ext4_free_branches - free an array of branches
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4270
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4271 4272 4273
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4274
	ext4_fsblk_t nr;
4275 4276
	__le32 *p;

4277
	if (ext4_handle_is_aborted(handle))
4278 4279 4280 4281
		return;

	if (depth--) {
		struct buffer_head *bh;
4282
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4297
				ext4_error(inode->i_sb, "ext4_free_branches",
4298
					   "Read failure, inode=%lu, block=%llu",
4299 4300 4301 4302 4303 4304
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4305
			ext4_free_branches(handle, inode, bh,
4306 4307 4308
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4309 4310 4311 4312 4313

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4314
			 * jbd2_journal_revoke().
4315 4316 4317
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4318
			 * transaction then jbd2_journal_forget() will simply
4319
			 * brelse() it.  That means that if the underlying
4320
			 * block is reallocated in ext4_get_block(),
4321 4322 4323 4324 4325 4326 4327 4328
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4329
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4347
			if (ext4_handle_is_aborted(handle))
4348 4349
				return;
			if (try_to_extend_transaction(handle, inode)) {
4350
				ext4_mark_inode_dirty(handle, inode);
4351 4352
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4353 4354
			}

4355 4356
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4357 4358 4359 4360 4361 4362 4363

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4364
				if (!ext4_journal_get_write_access(handle,
4365 4366 4367
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4368 4369 4370 4371
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4372 4373 4374 4375 4376 4377
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4378
		ext4_free_data(handle, inode, parent_bh, first, last);
4379 4380 4381
	}
}

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4395
/*
4396
 * ext4_truncate()
4397
 *
4398 4399
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4416
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4417
 * that this inode's truncate did not complete and it will again call
4418 4419
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4420
 * that's fine - as long as they are linked from the inode, the post-crash
4421
 * ext4_truncate() run will find them and release them.
4422
 */
4423
void ext4_truncate(struct inode *inode)
4424 4425
{
	handle_t *handle;
4426
	struct ext4_inode_info *ei = EXT4_I(inode);
4427
	__le32 *i_data = ei->i_data;
4428
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4429
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4430
	ext4_lblk_t offsets[4];
4431 4432 4433 4434
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4435
	ext4_lblk_t last_block;
4436 4437
	unsigned blocksize = inode->i_sb->s_blocksize;

4438
	if (!ext4_can_truncate(inode))
4439 4440
		return;

4441
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4442 4443
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4444
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4445
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4446 4447
		return;
	}
A
Alex Tomas 已提交
4448

4449
	handle = start_transaction(inode);
4450
	if (IS_ERR(handle))
4451 4452 4453
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4454
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4455

4456 4457 4458
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4459

4460
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4473
	if (ext4_orphan_add(handle, inode))
4474 4475
		goto out_stop;

4476 4477 4478 4479 4480
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4481

4482
	ext4_discard_preallocations(inode);
4483

4484 4485 4486 4487 4488
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4489
	 * ext4 *really* writes onto the disk inode.
4490 4491 4492 4493
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4494 4495
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4496 4497 4498
		goto do_indirects;
	}

4499
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4500 4501 4502 4503
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4504
			ext4_free_branches(handle, inode, NULL,
4505 4506 4507 4508 4509 4510 4511 4512 4513
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4514
			ext4_free_branches(handle, inode, partial->bh,
4515 4516 4517 4518 4519 4520
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4521
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4522 4523 4524
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4525
		brelse(partial->bh);
4526 4527 4528 4529 4530 4531
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4532
		nr = i_data[EXT4_IND_BLOCK];
4533
		if (nr) {
4534 4535
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4536
		}
4537 4538
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4539
		if (nr) {
4540 4541
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4542
		}
4543 4544
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4545
		if (nr) {
4546 4547
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4548
		}
4549
	case EXT4_TIND_BLOCK:
4550 4551 4552
		;
	}

4553
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4554
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4555
	ext4_mark_inode_dirty(handle, inode);
4556 4557 4558 4559 4560 4561

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4562
		ext4_handle_sync(handle);
4563 4564 4565 4566 4567
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4568
	 * ext4_delete_inode(), and we allow that function to clean up the
4569 4570 4571
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4572
		ext4_orphan_del(handle, inode);
4573

4574
	ext4_journal_stop(handle);
4575 4576 4577
}

/*
4578
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4579 4580 4581 4582
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4583 4584
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4585
{
4586 4587 4588 4589 4590 4591
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4592
	iloc->bh = NULL;
4593 4594
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4595

4596 4597 4598
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4599 4600
		return -EIO;

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4611
	if (!bh) {
4612 4613 4614
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4615 4616 4617 4618
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4642
			int i, start;
4643

4644
			start = inode_offset & ~(inodes_per_block - 1);
4645

4646 4647
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4660
			for (i = start; i < start + inodes_per_block; i++) {
4661 4662
				if (i == inode_offset)
					continue;
4663
				if (ext4_test_bit(i, bitmap_bh->b_data))
4664 4665 4666
					break;
			}
			brelse(bitmap_bh);
4667
			if (i == start + inodes_per_block) {
4668 4669 4670 4671 4672 4673 4674 4675 4676
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4677 4678 4679 4680 4681 4682 4683 4684 4685
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4686
			/* s_inode_readahead_blks is always a power of 2 */
4687 4688 4689 4690 4691 4692 4693
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4694
				num -= ext4_itable_unused_count(sb, gdp);
4695 4696 4697 4698 4699 4700 4701
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4712 4713 4714
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4715 4716 4717 4718 4719 4720 4721 4722 4723
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4724
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4725 4726
{
	/* We have all inode data except xattrs in memory here. */
4727 4728
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4729 4730
}

4731
void ext4_set_inode_flags(struct inode *inode)
4732
{
4733
	unsigned int flags = EXT4_I(inode)->i_flags;
4734 4735

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4736
	if (flags & EXT4_SYNC_FL)
4737
		inode->i_flags |= S_SYNC;
4738
	if (flags & EXT4_APPEND_FL)
4739
		inode->i_flags |= S_APPEND;
4740
	if (flags & EXT4_IMMUTABLE_FL)
4741
		inode->i_flags |= S_IMMUTABLE;
4742
	if (flags & EXT4_NOATIME_FL)
4743
		inode->i_flags |= S_NOATIME;
4744
	if (flags & EXT4_DIRSYNC_FL)
4745 4746 4747
		inode->i_flags |= S_DIRSYNC;
}

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4766

4767
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4768
				  struct ext4_inode_info *ei)
4769 4770
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4771 4772
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4773 4774 4775 4776 4777 4778

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4779 4780 4781 4782 4783 4784
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4785 4786 4787 4788
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4789

4790
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4791
{
4792 4793
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4794 4795
	struct ext4_inode_info *ei;
	struct inode *inode;
4796
	journal_t *journal = EXT4_SB(sb)->s_journal;
4797
	long ret;
4798 4799
	int block;

4800 4801 4802 4803 4804 4805 4806
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4807
	iloc.bh = 0;
4808

4809 4810
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4811
		goto bad_inode;
4812
	raw_inode = ext4_raw_inode(&iloc);
4813 4814 4815
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4816
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4832
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4833
			/* this inode is deleted */
4834
			ret = -ESTALE;
4835 4836 4837 4838 4839 4840 4841 4842
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4843
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4844
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4845
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4846 4847
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4848
	inode->i_size = ext4_isize(raw_inode);
4849
	ei->i_disksize = inode->i_size;
4850 4851 4852
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4853 4854
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4855
	ei->i_last_alloc_group = ~0;
4856 4857 4858 4859
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4860
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4861 4862 4863
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4889
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4891
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4892
		    EXT4_INODE_SIZE(inode->i_sb)) {
4893
			ret = -EIO;
4894
			goto bad_inode;
4895
		}
4896 4897
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4898 4899
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4900 4901
		} else {
			__le32 *magic = (void *)raw_inode +
4902
					EXT4_GOOD_OLD_INODE_SIZE +
4903
					ei->i_extra_isize;
4904
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4905
				ei->i_state |= EXT4_STATE_XATTR;
4906 4907 4908 4909
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4910 4911 4912 4913 4914
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4915 4916 4917 4918 4919 4920 4921
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4922
	ret = 0;
4923
	if (ei->i_file_acl &&
4924
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4925 4926 4927 4928 4929 4930
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4931 4932 4933 4934 4935
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4936
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4937 4938
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4939
		/* Validate block references which are part of inode */
4940 4941
		ret = ext4_check_inode_blockref(inode);
	}
4942
	if (ret)
4943
		goto bad_inode;
4944

4945
	if (S_ISREG(inode->i_mode)) {
4946 4947 4948
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4949
	} else if (S_ISDIR(inode->i_mode)) {
4950 4951
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4952
	} else if (S_ISLNK(inode->i_mode)) {
4953
		if (ext4_inode_is_fast_symlink(inode)) {
4954
			inode->i_op = &ext4_fast_symlink_inode_operations;
4955 4956 4957
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4958 4959
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4960
		}
4961 4962
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963
		inode->i_op = &ext4_special_inode_operations;
4964 4965 4966 4967 4968 4969
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970 4971
	} else {
		ret = -EIO;
4972
		ext4_error(inode->i_sb, __func__,
4973 4974 4975
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4976
	}
4977
	brelse(iloc.bh);
4978
	ext4_set_inode_flags(inode);
4979 4980
	unlock_new_inode(inode);
	return inode;
4981 4982

bad_inode:
4983
	brelse(iloc.bh);
4984 4985
	iget_failed(inode);
	return ERR_PTR(ret);
4986 4987
}

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5001
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5002
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
5003
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5004 5005 5006 5007 5008 5009
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5010 5011 5012 5013
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5014
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5015
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
5016
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5017
	} else {
A
Aneesh Kumar K.V 已提交
5018 5019 5020 5021 5022
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5023
	}
5024
	return 0;
5025 5026
}

5027 5028 5029 5030 5031 5032 5033
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5034
static int ext4_do_update_inode(handle_t *handle,
5035
				struct inode *inode,
5036
				struct ext4_iloc *iloc)
5037
{
5038 5039
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5040 5041 5042 5043 5044
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5045 5046
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5047

5048
	ext4_get_inode_flags(ei);
5049
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5050
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5051 5052 5053 5054 5055 5056
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5057
		if (!ei->i_dtime) {
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5075 5076 5077 5078 5079 5080

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5081 5082
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5083
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5084
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5085 5086
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5087 5088
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5089
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5106
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5107
			sb->s_dirt = 1;
5108 5109
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
5110
					EXT4_SB(sb)->s_sbh);
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5125 5126 5127
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5128

5129 5130 5131 5132 5133
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5134
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5135 5136
	}

5137 5138 5139 5140
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
	if (!err)
		err = rc;
5141
	ei->i_state &= ~EXT4_STATE_NEW;
5142

5143
	ext4_update_inode_fsync_trans(handle, inode, 0);
5144
out_brelse:
5145
	brelse(bh);
5146
	ext4_std_error(inode->i_sb, err);
5147 5148 5149 5150
	return err;
}

/*
5151
 * ext4_write_inode()
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5168
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5185
int ext4_write_inode(struct inode *inode, int wait)
5186
{
5187 5188
	int err;

5189 5190 5191
	if (current->flags & PF_MEMALLOC)
		return 0;

5192 5193 5194 5195 5196 5197
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5198

5199 5200 5201 5202 5203 5204
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5205

5206 5207 5208
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
		if (wait)
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5219 5220
	}
	return err;
5221 5222 5223
}

/*
5224
 * ext4_setattr()
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5238 5239 5240 5241 5242 5243 5244 5245
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5246
 */
5247
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5248 5249 5250 5251 5252 5253 5254 5255 5256
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5257 5258
	if (ia_valid & ATTR_SIZE)
		vfs_dq_init(inode);
5259 5260 5261 5262 5263 5264
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5265
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5266
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5267 5268 5269 5270
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5271
		error = dquot_transfer(inode, attr);
5272
		if (error) {
5273
			ext4_journal_stop(handle);
5274 5275 5276 5277 5278 5279 5280 5281
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5282 5283
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5284 5285
	}

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5297 5298 5299 5300
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

5301
		handle = ext4_journal_start(inode, 3);
5302 5303 5304 5305 5306
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5307 5308 5309
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5310 5311
		if (!error)
			error = rc;
5312
		ext4_journal_stop(handle);
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5329 5330 5331 5332
	}

	rc = inode_setattr(inode, attr);

5333
	/* If inode_setattr's call to ext4_truncate failed to get a
5334 5335 5336
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5337
		ext4_orphan_del(NULL, inode);
5338 5339

	if (!rc && (ia_valid & ATTR_MODE))
5340
		rc = ext4_acl_chmod(inode);
5341 5342

err_out:
5343
	ext4_std_error(inode->i_sb, error);
5344 5345 5346 5347 5348
	if (!error)
		error = rc;
	return error;
}

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5375

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5404 5405
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5406
}
5407

5408
/*
5409 5410 5411
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5412
 *
5413
 * If datablocks are discontiguous, they are possible to spread over
5414
 * different block groups too. If they are contiuguous, with flexbg,
5415
 * they could still across block group boundary.
5416
 *
5417 5418 5419 5420
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5421 5422
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5449 5450
	if (groups > ngroups)
		groups = ngroups;
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5465 5466
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5467
 *
5468
 * This could be called via ext4_write_begin()
5469
 *
5470
 * We need to consider the worse case, when
5471
 * one new block per extent.
5472
 */
A
Alex Tomas 已提交
5473
int ext4_writepage_trans_blocks(struct inode *inode)
5474
{
5475
	int bpp = ext4_journal_blocks_per_page(inode);
5476 5477
	int ret;

5478
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5479

5480
	/* Account for data blocks for journalled mode */
5481
	if (ext4_should_journal_data(inode))
5482
		ret += bpp;
5483 5484
	return ret;
}
5485 5486 5487 5488 5489

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5490
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5491 5492 5493 5494 5495 5496 5497 5498 5499
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5500
/*
5501
 * The caller must have previously called ext4_reserve_inode_write().
5502 5503
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5504
int ext4_mark_iloc_dirty(handle_t *handle,
5505
			 struct inode *inode, struct ext4_iloc *iloc)
5506 5507 5508
{
	int err = 0;

5509 5510 5511
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5512 5513 5514
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5515
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5516
	err = ext4_do_update_inode(handle, inode, iloc);
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5527 5528
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5529
{
5530 5531 5532 5533 5534 5535 5536 5537 5538
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5539 5540
		}
	}
5541
	ext4_std_error(inode->i_sb, err);
5542 5543 5544
	return err;
}

5545 5546 5547 5548
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5549 5550 5551 5552
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5601
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5602
{
5603
	struct ext4_iloc iloc;
5604 5605 5606
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5607 5608

	might_sleep();
5609
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5610 5611
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5627 5628
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5629
					ext4_warning(inode->i_sb, __func__,
5630 5631 5632
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5633 5634
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5635 5636 5637 5638
				}
			}
		}
	}
5639
	if (!err)
5640
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5641 5642 5643 5644
	return err;
}

/*
5645
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5646 5647 5648 5649 5650
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5651
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5652 5653 5654 5655 5656 5657
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5658
void ext4_dirty_inode(struct inode *inode)
5659 5660 5661
{
	handle_t *handle;

5662
	handle = ext4_journal_start(inode, 2);
5663 5664
	if (IS_ERR(handle))
		goto out;
5665 5666 5667

	ext4_mark_inode_dirty(handle, inode);

5668
	ext4_journal_stop(handle);
5669 5670 5671 5672 5673 5674 5675 5676
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5677
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5678 5679 5680
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5681
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5682
{
5683
	struct ext4_iloc iloc;
5684 5685 5686

	int err = 0;
	if (handle) {
5687
		err = ext4_get_inode_loc(inode, &iloc);
5688 5689
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5690
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5691
			if (!err)
5692 5693 5694
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5695 5696 5697
			brelse(iloc.bh);
		}
	}
5698
	ext4_std_error(inode->i_sb, err);
5699 5700 5701 5702
	return err;
}
#endif

5703
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5719
	journal = EXT4_JOURNAL(inode);
5720 5721
	if (!journal)
		return 0;
5722
	if (is_journal_aborted(journal))
5723 5724
		return -EROFS;

5725 5726
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5737
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5738
	else
5739 5740
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5741

5742
	jbd2_journal_unlock_updates(journal);
5743 5744 5745

	/* Finally we can mark the inode as dirty. */

5746
	handle = ext4_journal_start(inode, 1);
5747 5748 5749
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5750
	err = ext4_mark_inode_dirty(handle, inode);
5751
	ext4_handle_sync(handle);
5752 5753
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5754 5755 5756

	return err;
}
5757 5758 5759 5760 5761 5762

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5763
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5764
{
5765
	struct page *page = vmf->page;
5766 5767 5768
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5769
	void *fsdata;
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5794 5795 5796 5797 5798 5799 5800
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5801 5802
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5803 5804
					ext4_bh_unmapped)) {
			unlock_page(page);
5805
			goto out_unlock;
5806
		}
5807
	}
5808
	unlock_page(page);
5809 5810 5811 5812 5813 5814 5815 5816
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5817
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5818 5819 5820
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5821
			len, len, page, fsdata);
5822 5823 5824 5825
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5826 5827
	if (ret)
		ret = VM_FAULT_SIGBUS;
5828 5829 5830
	up_read(&inode->i_alloc_sem);
	return ret;
}