inode.c 143.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49 50 51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

54 55
static void ext4_invalidatepage(struct page *page, unsigned long offset);

56 57 58
/*
 * Test whether an inode is a fast symlink.
 */
59
static int ext4_inode_is_fast_symlink(struct inode *inode)
60
{
61
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 63 64 65 66 67
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
68
 * The ext4 forget function must perform a revoke if we are freeing data
69 70 71 72 73 74 75
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
76 77
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

95 96
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
97
		if (bh) {
98
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
99
			return ext4_journal_forget(handle, bh);
100 101 102 103 104 105 106
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
107 108
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
109
	if (err)
110
		ext4_abort(inode->i_sb, __func__,
111 112 113 114 115 116 117 118 119 120 121
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
122
	ext4_lblk_t needed;
123 124 125 126 127 128

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
129
	 * like a regular file for ext4 to try to delete it.  Things
130 131 132 133 134 135 136
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
137 138
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
139

140
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

157
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
158 159 160
	if (!IS_ERR(result))
		return result;

161
	ext4_std_error(inode->i_sb, PTR_ERR(result));
162 163 164 165 166 167 168 169 170 171 172
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
173
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174
		return 0;
175
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176 177 178 179 180 181 182 183 184
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
185
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 187
{
	jbd_debug(2, "restarting handle %p\n", handle);
188
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 190 191 192 193
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
194
void ext4_delete_inode(struct inode *inode)
195 196
{
	handle_t *handle;
197
	int err;
198

199 200
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
201 202 203 204 205
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

206
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207
	if (IS_ERR(handle)) {
208
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 210 211 212 213
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
214
		ext4_orphan_del(NULL, inode);
215 216 217 218 219 220
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
221 222 223 224 225 226
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
227
	if (inode->i_blocks)
228
		ext4_truncate(inode);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
	if (handle->h_buffer_credits < 3) {
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

249
	/*
250
	 * Kill off the orphan record which ext4_truncate created.
251
	 * AKPM: I think this can be inside the above `if'.
252
	 * Note that ext4_orphan_del() has to be able to cope with the
253
	 * deletion of a non-existent orphan - this is because we don't
254
	 * know if ext4_truncate() actually created an orphan record.
255 256
	 * (Well, we could do this if we need to, but heck - it works)
	 */
257 258
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
259 260 261 262 263 264 265 266

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
267
	if (ext4_mark_inode_dirty(handle, inode))
268 269 270
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
271 272
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
291
 *	ext4_block_to_path - parse the block number into array of offsets
292 293 294
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
295 296
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
297
 *
298
 *	To store the locations of file's data ext4 uses a data structure common
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

321
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
322 323
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
324
{
325 326 327
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
328 329 330 331 332 333
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
334
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335 336 337
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "ext4_block_to_path",
355
				"block %lu > max",
356 357
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
358 359 360 361 362 363 364
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
365
 *	ext4_get_branch - read the chain of indirect blocks leading to data
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
390 391
 *
 *      Need to be called with
392
 *      down_read(&EXT4_I(inode)->i_data_sem)
393
 */
A
Aneesh Kumar K.V 已提交
394 395
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
396 397 398 399 400 401 402 403
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
404
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405 406 407 408 409 410
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
411
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412 413 414 415 416 417 418 419 420 421 422 423 424
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
425
 *	ext4_find_near - find a place for allocation with sufficient locality
426 427 428
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
429
 *	This function returns the preferred place for block allocation.
430 431 432 433 434 435 436 437 438 439 440 441 442 443
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
444
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445
{
446
	struct ext4_inode_info *ei = EXT4_I(inode);
447
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448
	__le32 *p;
449
	ext4_fsblk_t bg_start;
450
	ext4_fsblk_t last_block;
451
	ext4_grpblk_t colour;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
467
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468 469 470 471
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
472
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473 474
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475 476 477 478
	return bg_start + colour;
}

/**
479
 *	ext4_find_goal - find a preferred place for allocation.
480 481 482 483
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
484
 *	Normally this function find the preferred place for block allocation,
485
 *	returns it.
486
 */
A
Aneesh Kumar K.V 已提交
487
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488
		Indirect *partial)
489 490
{
	/*
491
	 * XXX need to get goal block from mballoc's data structures
492 493
	 */

494
	return ext4_find_near(inode, partial);
495 496 497
}

/**
498
 *	ext4_blks_to_allocate: Look up the block map and count the number
499 500 501 502 503 504 505 506 507 508
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
509
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
536
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
537 538 539 540 541 542 543 544
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
545
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546 547 548
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
549 550
{
	int target, i;
551
	unsigned long count = 0, blk_allocated = 0;
552
	int index = 0;
553
	ext4_fsblk_t current_block = 0;
554 555 556 557 558 559 560 561 562 563
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
564 565 566
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
567 568
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
569 570
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
571 572 573 574 575 576 577 578 579
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
580 581 582 583 584 585 586 587 588
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
589
			break;
590
		}
591 592
	}

593 594 595 596 597 598
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
	count = target;
A
Aneesh Kumar K.V 已提交
599
	/* allocating blocks for data blocks */
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	current_block = ext4_new_blocks(handle, inode, iblock,
						goal, &count, err);
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
		blk_allocated += count;
	}
allocated:
620
	/* total number of blocks allocated for direct blocks */
621
	ret = blk_allocated;
622 623 624
	*err = 0;
	return ret;
failed_out:
625
	for (i = 0; i < index; i++)
626
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
627 628 629 630
	return ret;
}

/**
631
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
632 633 634 635 636 637 638 639 640 641
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
642
 *	the same format as ext4_get_branch() would do. We are calling it after
643 644
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
645
 *	picture as after the successful ext4_get_block(), except that in one
646 647 648 649 650 651
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
652
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
653 654
 *	as described above and return 0.
 */
655
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
656 657 658
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
659 660 661 662 663 664
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
665 666
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
667

668
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
687
		err = ext4_journal_get_create_access(handle, bh);
688 689 690 691 692 693 694 695 696 697
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
698
		if (n == indirect_blks) {
699 700 701 702 703 704 705 706 707 708 709 710 711
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

712 713
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
714 715 716 717 718 719 720 721
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
722
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
723
		ext4_journal_forget(handle, branch[i].bh);
724
	}
725
	for (i = 0; i < indirect_blks; i++)
726
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
727

728
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
729 730 731 732 733

	return err;
}

/**
734
 * ext4_splice_branch - splice the allocated branch onto inode.
735 736 737
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
738
 *	ext4_alloc_branch)
739 740 741 742 743 744 745 746
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
747
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
748
			ext4_lblk_t block, Indirect *where, int num, int blks)
749 750 751
{
	int i;
	int err = 0;
752
	ext4_fsblk_t current_block;
753 754 755 756 757 758 759 760

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
761
		err = ext4_journal_get_write_access(handle, where->bh);
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
776
			*(where->p + i) = cpu_to_le32(current_block++);
777 778 779 780
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
781
	inode->i_ctime = ext4_current_time(inode);
782
	ext4_mark_inode_dirty(handle, inode);
783 784 785 786 787 788 789 790 791

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
792
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
793 794
		 */
		jbd_debug(5, "splicing indirect only\n");
795 796
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
797 798 799 800 801 802 803 804 805 806 807 808 809
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
810
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
811
		ext4_journal_forget(handle, where[i].bh);
812 813
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
814
	}
815
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
837 838 839
 *
 *
 * Need to be called with
840 841
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
842
 */
843
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
844
		ext4_lblk_t iblock, unsigned long maxblocks,
845 846 847 848
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
849
	ext4_lblk_t offsets[4];
850 851
	Indirect chain[4];
	Indirect *partial;
852
	ext4_fsblk_t goal;
853 854 855
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
856
	struct ext4_inode_info *ei = EXT4_I(inode);
857
	int count = 0;
858
	ext4_fsblk_t first_block = 0;
859
	loff_t disksize;
860 861


A
Alex Tomas 已提交
862
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
863
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
864 865
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
866 867 868 869

	if (depth == 0)
		goto out;

870
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
871 872 873 874 875 876 877 878

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
879
			ext4_fsblk_t blk;
880 881 882 883 884 885 886 887

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
888
		goto got_it;
889 890 891 892 893 894 895
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
896
	 * Okay, we need to do block allocation.
897
	*/
898
	goal = ext4_find_goal(inode, iblock, partial);
899 900 901 902 903 904 905 906

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
907
	count = ext4_blks_to_allocate(partial, indirect_blks,
908 909
					maxblocks, blocks_to_boundary);
	/*
910
	 * Block out ext4_truncate while we alter the tree
911
	 */
912 913 914
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
915 916

	/*
917
	 * The ext4_splice_branch call will free and forget any buffers
918 919 920 921 922 923
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
924
		err = ext4_splice_branch(handle, inode, iblock,
925 926
					partial, indirect_blks, count);
	/*
927
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
928
	 * protect it if you're about to implement concurrent
929
	 * ext4_get_block() -bzzz
930
	*/
931 932 933 934 935 936 937
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
985 986 987
	if (!blocks)
		return 0;

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1008 1009 1010 1011 1012 1013 1014 1015 1016
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1017 1018 1019 1020 1021 1022 1023 1024

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

1025
/*
1026 1027
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1047 1048
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
1049
			int create, int extend_disksize, int flag)
1050 1051
{
	int retval;
1052 1053 1054

	clear_buffer_mapped(bh);

1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1063
	} else {
1064 1065
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1066
	}
1067
	up_read((&EXT4_I(inode)->i_data_sem));
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1081 1082 1083
		return retval;

	/*
1084 1085 1086 1087
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1088 1089
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1090 1091 1092 1093 1094 1095 1096 1097 1098

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1099 1100 1101 1102
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1103 1104 1105 1106 1107 1108
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1119
	}
1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1129
			ext4_da_update_reserve_space(inode, retval);
1130 1131
	}

1132
	up_write((&EXT4_I(inode)->i_data_sem));
1133 1134 1135
	return retval;
}

1136 1137 1138
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1139 1140
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1141
{
1142
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1143
	int ret = 0, started = 0;
1144
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1145
	int dio_credits;
1146

J
Jan Kara 已提交
1147 1148 1149 1150
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1151 1152
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1153
		if (IS_ERR(handle)) {
1154
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1155
			goto out;
1156
		}
J
Jan Kara 已提交
1157
		started = 1;
1158 1159
	}

J
Jan Kara 已提交
1160
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1161
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1162 1163 1164
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1165
	}
J
Jan Kara 已提交
1166 1167 1168
	if (started)
		ext4_journal_stop(handle);
out:
1169 1170 1171 1172 1173 1174
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1175
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1176
				ext4_lblk_t block, int create, int *errp)
1177 1178 1179 1180 1181 1182 1183 1184 1185
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1186
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1187
					&dummy, create, 1, 0);
1188
	/*
1189
	 * ext4_get_blocks_handle() returns number of blocks
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1207
			J_ASSERT(handle != NULL);
1208 1209 1210 1211 1212

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1213
			 * writes use ext4_get_block instead, so it's not a
1214 1215 1216 1217
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1218
			fatal = ext4_journal_get_create_access(handle, bh);
1219
			if (!fatal && !buffer_uptodate(bh)) {
1220
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1221 1222 1223
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1224 1225
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1242
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1243
			       ext4_lblk_t block, int create, int *err)
1244
{
1245
	struct buffer_head *bh;
1246

1247
	bh = ext4_getblk(handle, inode, block, create, err);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1261 1262 1263 1264 1265 1266 1267
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1268 1269 1270 1271 1272 1273 1274
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1275 1276 1277
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1296
 * close off a transaction and start a new one between the ext4_get_block()
1297
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1298 1299
 * prepare_write() is the right place.
 *
1300 1301
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1302 1303 1304 1305
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1306
 * By accident, ext4 can be reentered when a transaction is open via
1307 1308 1309 1310 1311 1312
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1313
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1314 1315 1316 1317 1318 1319 1320 1321 1322
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1323
	return ext4_journal_get_write_access(handle, bh);
1324 1325
}

N
Nick Piggin 已提交
1326 1327 1328
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1329
{
1330
	struct inode *inode = mapping->host;
1331
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1332 1333
	handle_t *handle;
	int retries = 0;
1334
	struct page *page;
N
Nick Piggin 已提交
1335
 	pgoff_t index;
1336
	unsigned from, to;
N
Nick Piggin 已提交
1337 1338

 	index = pos >> PAGE_CACHE_SHIFT;
1339 1340
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1341 1342

retry:
1343 1344 1345 1346
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1347
	}
1348

1349
	page = grab_cache_page_write_begin(mapping, index, flags);
1350 1351 1352 1353 1354 1355 1356
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1357 1358 1359 1360
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1361 1362 1363
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1364 1365

	if (ret) {
1366
		unlock_page(page);
1367
		ext4_journal_stop(handle);
1368
		page_cache_release(page);
1369 1370 1371 1372 1373 1374 1375
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1376 1377
	}

1378
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1379
		goto retry;
1380
out:
1381 1382 1383
	return ret;
}

N
Nick Piggin 已提交
1384 1385
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1386 1387 1388 1389
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1390
	return ext4_journal_dirty_metadata(handle, bh);
1391 1392 1393 1394 1395 1396
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1397
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1398 1399
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1400 1401 1402 1403
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1404
{
1405
	handle_t *handle = ext4_journal_current_handle();
1406
	struct inode *inode = mapping->host;
1407 1408
	int ret = 0, ret2;

1409
	ret = ext4_jbd2_file_inode(handle, inode);
1410 1411 1412 1413

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1414
		new_i_size = pos + copied;
1415 1416 1417 1418 1419 1420 1421 1422 1423
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1424
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1425
							page, fsdata);
1426 1427 1428
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1429
	}
1430
	ret2 = ext4_journal_stop(handle);
1431 1432
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1433 1434

	return ret ? ret : copied;
1435 1436
}

N
Nick Piggin 已提交
1437 1438 1439 1440
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1441
{
1442
	handle_t *handle = ext4_journal_current_handle();
1443
	struct inode *inode = mapping->host;
1444 1445 1446
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1447
	new_i_size = pos + copied;
1448 1449 1450 1451 1452 1453 1454 1455
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1456

1457
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1458
							page, fsdata);
1459 1460 1461
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1462

1463
	ret2 = ext4_journal_stop(handle);
1464 1465
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1466 1467

	return ret ? ret : copied;
1468 1469
}

N
Nick Piggin 已提交
1470 1471 1472 1473
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1474
{
1475
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1476
	struct inode *inode = mapping->host;
1477 1478
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1479
	unsigned from, to;
1480
	loff_t new_i_size;
1481

N
Nick Piggin 已提交
1482 1483 1484 1485 1486 1487 1488 1489
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1490 1491

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1492
				to, &partial, write_end_fn);
1493 1494
	if (!partial)
		SetPageUptodate(page);
1495 1496
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1497
		i_size_write(inode, pos+copied);
1498
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1499 1500
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1501
		ret2 = ext4_mark_inode_dirty(handle, inode);
1502 1503 1504
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1505

1506
	unlock_page(page);
1507
	ret2 = ext4_journal_stop(handle);
1508 1509
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1510 1511 1512
	page_cache_release(page);

	return ret ? ret : copied;
1513
}
1514 1515 1516

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1517
	int retries = 0;
1518 1519 1520 1521 1522 1523 1524 1525
       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
       unsigned long md_needed, mdblocks, total = 0;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1526
repeat:
1527 1528 1529 1530 1531 1532 1533 1534
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1535
	if (ext4_claim_free_blocks(sbi, total)) {
1536
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1537 1538 1539 1540
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1541 1542 1543 1544 1545 1546 1547 1548 1549
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1550
static void ext4_da_release_space(struct inode *inode, int to_free)
1551 1552 1553 1554
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1555 1556 1557
	if (!to_free)
		return;		/* Nothing to release, exit */

1558
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1574
	/* recalculate the number of metablocks still need to be reserved */
1575
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1576 1577 1578 1579 1580 1581 1582 1583
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1584 1585
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1586 1587

	/* update per-inode reservations */
1588 1589
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1614
	ext4_da_release_space(page->mapping->host, to_release);
1615
}
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
1627 1628
	int io_done;
	long pages_written;
1629
	int retval;
1630 1631 1632 1633
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1634
 * them with writepage() call back
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
	struct address_space *mapping = mpd->inode->i_mapping;
	int ret = 0, err, nr_pages, i;
	unsigned long index, end;
	struct pagevec pvec;
1652
	long pages_skipped;
1653 1654 1655 1656 1657 1658 1659

	BUG_ON(mpd->next_page <= mpd->first_page);
	pagevec_init(&pvec, 0);
	index = mpd->first_page;
	end = mpd->next_page - 1;

	while (index <= end) {
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		/*
		 * We can use PAGECACHE_TAG_DIRTY lookup here because
		 * even though we have cleared the dirty flag on the page
		 * We still keep the page in the radix tree with tag
		 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
		 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
		 * which is called via the below writepage callback.
		 */
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					PAGECACHE_TAG_DIRTY,
					min(end - index,
					(pgoff_t)PAGEVEC_SIZE-1) + 1);
1672 1673 1674 1675 1676
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1677
			pages_skipped = mpd->wbc->pages_skipped;
1678
			err = mapping->a_ops->writepage(page, mpd->wbc);
1679 1680 1681 1682 1683
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1684
				mpd->pages_written++;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1717
	pgoff_t index, end;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1760 1761 1762 1763 1764 1765 1766
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1767
				} else if (buffer_mapped(bh))
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1827 1828 1829 1830 1831 1832 1833
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1834
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1835
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1836
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1837 1838 1839 1840 1841 1842 1843 1844
	printk(KERN_EMERG "Block reservation details\n");
	printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
			EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1845 1846 1847 1848 1849 1850 1851 1852 1853
/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1854
static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1855
{
1856
	int err = 0;
A
Aneesh Kumar K.V 已提交
1857
	struct buffer_head new;
1858
	struct buffer_head *lbh = &mpd->lbh;
1859
	sector_t next;
1860 1861 1862 1863 1864

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1865
		return 0;
1866 1867 1868
	new.b_state = lbh->b_state;
	new.b_blocknr = 0;
	new.b_size = lbh->b_size;
1869
	next = lbh->b_blocknr;
1870 1871 1872 1873 1874
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
1875
		return 0;
1876
	err = mpd->get_block(mpd->inode, next, &new, 1);
1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (err) {

		/* If get block returns with error
		 * we simply return. Later writepage
		 * will redirty the page and writepages
		 * will find the dirty page again
		 */
		if (err == -EAGAIN)
			return 0;
1886 1887 1888 1889 1890 1891 1892

		if (err == -ENOSPC &&
				ext4_count_free_blocks(mpd->inode->i_sb)) {
			mpd->retval = err;
			return 0;
		}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * get block failure will cause us
		 * to loop in writepages. Because
		 * a_ops->writepage won't be able to
		 * make progress. The page will be redirtied
		 * by writepage and writepages will again
		 * try to write the same.
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
				  lbh->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
1909
		if (err == -ENOSPC) {
1910
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1911
		}
1912 1913 1914 1915 1916
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
				lbh->b_size >> mpd->inode->i_blkbits);
		return err;
	}
1917
	BUG_ON(new.b_size == 0);
1918

1919 1920
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
1921

1922 1923 1924 1925 1926 1927
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
	if (buffer_delay(lbh) || buffer_unwritten(lbh))
		mpage_put_bnr_to_bhs(mpd, next, &new);
1928

1929
	return 0;
1930 1931
}

1932 1933
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	sector_t next;
1948 1949 1950
	size_t b_size = bh->b_size;
	struct buffer_head *lbh = &mpd->lbh;
	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1974 1975 1976 1977 1978
	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
1979
		lbh->b_size = b_size;
1980 1981 1982 1983
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

1984
	next = lbh->b_blocknr + nrblocks;
1985 1986 1987 1988
	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1989
		lbh->b_size += b_size;
1990 1991 1992
		return;
	}

1993
flush_it:
1994 1995 1996 1997
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1998 1999
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2000 2001
	mpd->io_done = 1;
	return;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2032 2033 2034 2035 2036 2037
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2038
		 * and start IO on them using writepage()
2039 2040
		 */
		if (mpd->next_page != mpd->first_page) {
2041 2042
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2043 2044 2045 2046 2047 2048 2049
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
2080 2081
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2082 2083 2084 2085 2086 2087 2088 2089
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2090 2091
			if (buffer_dirty(bh) &&
				(!buffer_mapped(bh) || buffer_delay(bh))) {
2092
				mpage_add_bh_to_extent(mpd, logical, bh);
2093 2094 2095
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
			}
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
2117
			       struct mpage_da_data *mpd)
2118 2119 2120
{
	int ret;

2121
	if (!mpd->get_block)
2122 2123
		return generic_writepages(mapping, wbc);

2124 2125 2126 2127 2128 2129 2130 2131
	mpd->lbh.b_size = 0;
	mpd->lbh.b_state = 0;
	mpd->lbh.b_blocknr = 0;
	mpd->first_page = 0;
	mpd->next_page = 0;
	mpd->io_done = 0;
	mpd->pages_written = 0;
	mpd->retval = 0;
2132

2133
	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2134 2135 2136
	/*
	 * Handle last extent of pages
	 */
2137 2138 2139
	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
		if (mpage_da_map_blocks(mpd) == 0)
			mpage_da_submit_io(mpd);
2140

2141 2142 2143 2144
		mpd->io_done = 1;
		ret = MPAGE_DA_EXTENT_TAIL;
	}
	wbc->nr_to_write -= mpd->pages_written;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2165 2166 2167
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2168 2169 2170 2171
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2172 2173 2174 2175 2176
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2187
#define		EXT4_DELALLOC_RSVED	1
2188 2189 2190
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
2191
	int ret;
2192 2193 2194 2195
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

2196
	handle = ext4_journal_current_handle();
2197 2198 2199
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2200
	if (ret > 0) {
2201

2202 2203
		bh_result->b_size = (ret << inode->i_blkbits);

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		if (ext4_should_order_data(inode)) {
			int retval;
			retval = ext4_jbd2_file_inode(handle, inode);
			if (retval)
				/*
				 * Failed to add inode for ordered
				 * mode. Don't update file size
				 */
				return retval;
		}

2215 2216 2217 2218 2219 2220 2221 2222 2223
		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
2224 2225 2226
			ext4_update_i_disksize(inode, disksize);
			ret = ext4_mark_inode_dirty(handle, inode);
			return ret;
2227 2228 2229 2230 2231
		}
		ret = 0;
	}
	return ret;
}
2232 2233 2234

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2259 2260 2261
}

/*
2262 2263 2264 2265
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2266
 */
2267 2268 2269 2270
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2271 2272 2273 2274 2275
	loff_t size;
	unsigned long len;
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2276 2277 2278 2279 2280
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2281

2282
	if (page_has_buffers(page)) {
2283
		page_bufs = page_buffers(page);
2284 2285
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2286
			/*
2287 2288
			 * We don't want to do  block allocation
			 * So redirty the page and return
2289 2290 2291
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2328 2329 2330 2331 2332
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2333 2334
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2335 2336 2337
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2338
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2339
	else
2340 2341 2342
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2343 2344 2345 2346

	return ret;
}

2347
/*
2348 2349 2350 2351 2352
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2353
 */
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2371

2372
static int ext4_da_writepages(struct address_space *mapping,
2373
			      struct writeback_control *wbc)
2374
{
2375 2376
	pgoff_t	index;
	int range_whole = 0;
2377
	handle_t *handle = NULL;
2378
	struct mpage_da_data mpd;
2379
	struct inode *inode = mapping->host;
2380 2381
	int no_nrwrite_index_update;
	long pages_written = 0, pages_skipped;
2382 2383
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2384 2385 2386 2387 2388 2389

	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2390
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2391
		return 0;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2402 2403
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2404

2405 2406 2407 2408
	if (wbc->range_cyclic)
		index = mapping->writeback_index;
	else
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2409

2410 2411 2412
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2413 2414 2415 2416 2417 2418 2419 2420 2421
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

	while (!ret && wbc->nr_to_write > 0) {
2422 2423 2424 2425 2426 2427 2428 2429

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2430
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2431

2432 2433 2434 2435
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2436 2437 2438 2439
			printk(KERN_EMERG "%s: jbd2_start: "
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2440 2441
			goto out_writepages;
		}
2442 2443 2444
		mpd.get_block = ext4_da_get_block_write;
		ret = mpage_da_writepages(mapping, wbc, &mpd);

2445
		ext4_journal_stop(handle);
2446

2447 2448 2449 2450 2451
		if (mpd.retval == -ENOSPC) {
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2452
			jbd2_journal_force_commit_nested(sbi->s_journal);
2453 2454 2455
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2456 2457 2458 2459
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2460 2461
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2462
			ret = 0;
2463
		} else if (wbc->nr_to_write)
2464 2465 2466 2467 2468 2469
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2470
	}
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2484

2485
out_writepages:
2486 2487 2488
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2489
	return ret;
2490 2491
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
	 * counters can get slightly wrong with FBC_BATCH getting
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2519 2520 2521 2522
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2523
	int ret, retries = 0;
2524 2525 2526 2527 2528 2529 2530 2531 2532
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2533 2534 2535 2536 2537 2538 2539

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2540
retry:
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2553
	page = grab_cache_page_write_begin(mapping, index, flags);
2554 2555 2556 2557 2558
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2559 2560 2561 2562 2563 2564 2565 2566
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2567 2568 2569 2570 2571 2572 2573
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2574 2575
	}

2576 2577
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2578 2579 2580 2581
out:
	return ret;
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2597
	for (i = 0; i < idx; i++)
2598 2599 2600 2601 2602 2603 2604
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2605 2606 2607 2608 2609 2610 2611 2612 2613
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2614
	unsigned long start, end;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2628 2629

	start = pos & (PAGE_CACHE_SIZE - 1);
2630
	end = start + copied - 1;
2631 2632 2633 2634 2635 2636 2637 2638

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2650

2651 2652 2653
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2654 2655 2656 2657 2658
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2659
		}
2660
	}
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2682
	ext4_da_page_release_reservation(page, offset);
2683 2684 2685 2686 2687 2688 2689 2690

out:
	ext4_invalidatepage(page, offset);

	return;
}


2691 2692 2693 2694 2695
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2696
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2697 2698 2699 2700 2701 2702 2703 2704
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2705
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2706 2707 2708 2709 2710
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2721
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2733
		 * NB. EXT4_STATE_JDATA is not set on files other than
2734 2735 2736 2737 2738 2739
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2740 2741
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2742 2743 2744
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2745 2746 2747 2748 2749

		if (err)
			return 0;
	}

2750
	return generic_block_bmap(mapping, block, ext4_get_block);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2766 2767 2768 2769 2770 2771 2772 2773
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2774
 *
2775
 * In all journaling modes block_write_full_page() will start the I/O.
2776 2777 2778
 *
 * Problem:
 *
2779 2780
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2781 2782 2783
 *
 * Similar for:
 *
2784
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2785
 *
2786
 * Same applies to ext4_get_block().  We will deadlock on various things like
2787
 * lock_journal and i_data_sem
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2818
static int __ext4_normal_writepage(struct page *page,
2819 2820 2821 2822 2823
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2824 2825
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2826
	else
2827 2828 2829
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2830 2831
}

2832
static int ext4_normal_writepage(struct page *page,
2833 2834 2835
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2836 2837 2838 2839 2840 2841 2842 2843
	loff_t size = i_size_read(inode);
	loff_t len;

	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2858 2859

	if (!ext4_journal_current_handle())
2860
		return __ext4_normal_writepage(page, wbc);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2873 2874 2875 2876
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2877 2878
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
2879 2880 2881 2882 2883 2884 2885 2886 2887
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2888

2889
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2890 2891
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
2892
		goto out;
2893 2894
	}

2895 2896
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2897

2898 2899 2900 2901
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
2902
	err = ext4_journal_stop(handle);
2903 2904 2905
	if (!ret)
		ret = err;

2906 2907 2908 2909 2910 2911
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
2912
	unlock_page(page);
2913
out:
2914 2915 2916
	return ret;
}

2917
static int ext4_journalled_writepage(struct page *page,
2918 2919 2920
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2921 2922
	loff_t size = i_size_read(inode);
	loff_t len;
2923

2924 2925 2926 2927 2928
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2943

2944
	if (ext4_journal_current_handle())
2945 2946
		goto no_write;

2947
	if (PageChecked(page)) {
2948 2949 2950 2951 2952
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2953
		return __ext4_journalled_writepage(page, wbc);
2954 2955 2956 2957 2958 2959
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
2960 2961 2962
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2963 2964 2965 2966
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
2967
	return 0;
2968 2969
}

2970
static int ext4_readpage(struct file *file, struct page *page)
2971
{
2972
	return mpage_readpage(page, ext4_get_block);
2973 2974 2975
}

static int
2976
ext4_readpages(struct file *file, struct address_space *mapping,
2977 2978
		struct list_head *pages, unsigned nr_pages)
{
2979
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 2981
}

2982
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2983
{
2984
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2985 2986 2987 2988 2989 2990 2991

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2992
	jbd2_journal_invalidatepage(journal, page, offset);
2993 2994
}

2995
static int ext4_releasepage(struct page *page, gfp_t wait)
2996
{
2997
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998 2999 3000 3001

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3002
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003 3004 3005 3006 3007 3008 3009 3010
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3011 3012
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3013
 */
3014
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3015 3016 3017 3018 3019
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3020
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3021
	handle_t *handle;
3022 3023 3024 3025 3026 3027 3028 3029
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3030 3031 3032 3033 3034 3035
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3036
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3037 3038 3039 3040
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3041 3042
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3043
			ext4_journal_stop(handle);
3044 3045 3046 3047 3048
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3049
				 ext4_get_block, NULL);
3050

J
Jan Kara 已提交
3051
	if (orphan) {
3052 3053
		int err;

J
Jan Kara 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3064
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3065
		if (ret > 0) {
3066 3067 3068 3069 3070 3071 3072 3073
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3074
				 * ext4_mark_inode_dirty() to userspace.  So
3075 3076
				 * ignore it.
				 */
3077
				ext4_mark_inode_dirty(handle, inode);
3078 3079
			}
		}
3080
		err = ext4_journal_stop(handle);
3081 3082 3083 3084 3085 3086 3087 3088
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3089
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3101
static int ext4_journalled_set_page_dirty(struct page *page)
3102 3103 3104 3105 3106
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3107
static const struct address_space_operations ext4_ordered_aops = {
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3120 3121
};

3122
static const struct address_space_operations ext4_writeback_aops = {
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3135 3136
};

3137
static const struct address_space_operations ext4_journalled_aops = {
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3149 3150
};

3151
static const struct address_space_operations ext4_da_aops = {
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3165 3166
};

3167
void ext4_set_aops(struct inode *inode)
3168
{
3169 3170 3171 3172
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3173
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3174 3175 3176
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3177 3178
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3179
	else
3180
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3181 3182 3183
}

/*
3184
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3185 3186 3187 3188
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3189
int ext4_block_truncate_page(handle_t *handle,
3190 3191
		struct address_space *mapping, loff_t from)
{
3192
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3193
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3194 3195
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3196 3197
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3198
	struct page *page;
3199 3200
	int err = 0;

3201 3202 3203 3204
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3205 3206 3207 3208 3209 3210 3211 3212 3213
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3214
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3215
		zero_user(page, offset, length);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3240
		ext4_get_block(inode, iblock, bh, 0);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3261
	if (ext4_should_journal_data(inode)) {
3262
		BUFFER_TRACE(bh, "get write access");
3263
		err = ext4_journal_get_write_access(handle, bh);
3264 3265 3266 3267
		if (err)
			goto unlock;
	}

3268
	zero_user(page, offset, length);
3269 3270 3271 3272

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3273 3274
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
3275
	} else {
3276
		if (ext4_should_order_data(inode))
3277
			err = ext4_jbd2_file_inode(handle, inode);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3301
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3302 3303
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3304
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3305 3306 3307
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3308
 *	This is a helper function used by ext4_truncate().
3309 3310 3311 3312 3313 3314 3315
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3316
 *	past the truncation point is possible until ext4_truncate()
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3335
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3336
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3337 3338 3339 3340 3341 3342 3343 3344
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3345
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3356
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3368
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3369 3370 3371 3372 3373 3374
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3375
	while (partial > p) {
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3391 3392
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3393 3394 3395 3396 3397
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3398 3399
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
3400
		}
3401 3402
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3403 3404
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3405
			ext4_journal_get_write_access(handle, bh);
3406 3407 3408 3409 3410
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3411
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3412
	 * on them.  We've already detached each block from the file, so
3413
	 * bforget() in jbd2_journal_forget() should be safe.
3414
	 *
3415
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3416 3417 3418 3419
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3420
			struct buffer_head *tbh;
3421 3422

			*p = 0;
A
Aneesh Kumar K.V 已提交
3423 3424
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3425 3426 3427
		}
	}

3428
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3429 3430 3431
}

/**
3432
 * ext4_free_data - free a list of data blocks
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3450
static void ext4_free_data(handle_t *handle, struct inode *inode,
3451 3452 3453
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3454
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3455 3456 3457 3458
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3459
	ext4_fsblk_t nr;		    /* Current block # */
3460 3461 3462 3463 3464 3465
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3466
		err = ext4_journal_get_write_access(handle, this_bh);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3484
				ext4_clear_blocks(handle, inode, this_bh,
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3495
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3496 3497 3498
				  count, block_to_free_p, p);

	if (this_bh) {
3499
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3515 3516 3517 3518
	}
}

/**
3519
 *	ext4_free_branches - free an array of branches
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3531
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3532 3533 3534
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3535
	ext4_fsblk_t nr;
3536 3537 3538 3539 3540 3541 3542
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
3543
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3558
				ext4_error(inode->i_sb, "ext4_free_branches",
3559
					   "Read failure, inode=%lu, block=%llu",
3560 3561 3562 3563 3564 3565
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3566
			ext4_free_branches(handle, inode, bh,
3567 3568 3569
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3570 3571 3572 3573 3574

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3575
			 * jbd2_journal_revoke().
3576 3577 3578
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3579
			 * transaction then jbd2_journal_forget() will simply
3580
			 * brelse() it.  That means that if the underlying
3581
			 * block is reallocated in ext4_get_block(),
3582 3583 3584 3585 3586 3587 3588 3589
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3590
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
3611 3612
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3613 3614
			}

3615
			ext4_free_blocks(handle, inode, nr, 1, 1);
3616 3617 3618 3619 3620 3621 3622

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3623
				if (!ext4_journal_get_write_access(handle,
3624 3625 3626
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3627 3628
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
3629 3630 3631 3632 3633 3634 3635
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3636
		ext4_free_data(handle, inode, parent_bh, first, last);
3637 3638 3639
	}
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3653
/*
3654
 * ext4_truncate()
3655
 *
3656 3657
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3674
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3675
 * that this inode's truncate did not complete and it will again call
3676 3677
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3678
 * that's fine - as long as they are linked from the inode, the post-crash
3679
 * ext4_truncate() run will find them and release them.
3680
 */
3681
void ext4_truncate(struct inode *inode)
3682 3683
{
	handle_t *handle;
3684
	struct ext4_inode_info *ei = EXT4_I(inode);
3685
	__le32 *i_data = ei->i_data;
3686
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3687
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3688
	ext4_lblk_t offsets[4];
3689 3690 3691 3692
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3693
	ext4_lblk_t last_block;
3694 3695
	unsigned blocksize = inode->i_sb->s_blocksize;

3696
	if (!ext4_can_truncate(inode))
3697 3698
		return;

A
Aneesh Kumar K.V 已提交
3699
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3700
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3701 3702
		return;
	}
A
Alex Tomas 已提交
3703

3704
	handle = start_transaction(inode);
3705
	if (IS_ERR(handle))
3706 3707 3708
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3709
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3710

3711 3712 3713
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3714

3715
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3728
	if (ext4_orphan_add(handle, inode))
3729 3730
		goto out_stop;

3731 3732 3733 3734 3735
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3736

3737
	ext4_discard_preallocations(inode);
3738

3739 3740 3741 3742 3743
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3744
	 * ext4 *really* writes onto the disk inode.
3745 3746 3747 3748
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3749 3750
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3751 3752 3753
		goto do_indirects;
	}

3754
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3755 3756 3757 3758
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3759
			ext4_free_branches(handle, inode, NULL,
3760 3761 3762 3763 3764 3765 3766 3767 3768
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3769
			ext4_free_branches(handle, inode, partial->bh,
3770 3771 3772 3773 3774 3775
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3776
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3787
		nr = i_data[EXT4_IND_BLOCK];
3788
		if (nr) {
3789 3790
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3791
		}
3792 3793
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3794
		if (nr) {
3795 3796
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3797
		}
3798 3799
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3800
		if (nr) {
3801 3802
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3803
		}
3804
	case EXT4_TIND_BLOCK:
3805 3806 3807
		;
	}

3808
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3809
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3810
	ext4_mark_inode_dirty(handle, inode);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3823
	 * ext4_delete_inode(), and we allow that function to clean up the
3824 3825 3826
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3827
		ext4_orphan_del(handle, inode);
3828

3829
	ext4_journal_stop(handle);
3830 3831 3832
}

/*
3833
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3834 3835 3836 3837
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3838 3839
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3840
{
3841 3842 3843 3844 3845 3846 3847 3848 3849
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

	iloc->bh = 0;
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3850

3851 3852 3853
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3854 3855
		return -EIO;

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3866
	if (!bh) {
3867 3868 3869
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
3870 3871 3872 3873
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3897
			int i, start;
3898

3899
			start = inode_offset & ~(inodes_per_block - 1);
3900

3901 3902
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3915
			for (i = start; i < start + inodes_per_block; i++) {
3916 3917
				if (i == inode_offset)
					continue;
3918
				if (ext4_test_bit(i, bitmap_bh->b_data))
3919 3920 3921
					break;
			}
			brelse(bitmap_bh);
3922
			if (i == start + inodes_per_block) {
3923 3924 3925 3926 3927 3928 3929 3930 3931
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
				num -= le16_to_cpu(gdp->bg_itable_unused);
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3972 3973 3974
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
3975 3976 3977 3978 3979 3980 3981 3982 3983
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3984
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3985 3986
{
	/* We have all inode data except xattrs in memory here. */
3987 3988
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3989 3990
}

3991
void ext4_set_inode_flags(struct inode *inode)
3992
{
3993
	unsigned int flags = EXT4_I(inode)->i_flags;
3994 3995

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3996
	if (flags & EXT4_SYNC_FL)
3997
		inode->i_flags |= S_SYNC;
3998
	if (flags & EXT4_APPEND_FL)
3999
		inode->i_flags |= S_APPEND;
4000
	if (flags & EXT4_IMMUTABLE_FL)
4001
		inode->i_flags |= S_IMMUTABLE;
4002
	if (flags & EXT4_NOATIME_FL)
4003
		inode->i_flags |= S_NOATIME;
4004
	if (flags & EXT4_DIRSYNC_FL)
4005 4006 4007
		inode->i_flags |= S_DIRSYNC;
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4026 4027 4028 4029
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4030 4031
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4032 4033 4034 4035 4036 4037

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4038 4039 4040 4041 4042 4043
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4044 4045 4046 4047
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4048

4049
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4050
{
4051 4052
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4053
	struct ext4_inode_info *ei;
4054
	struct buffer_head *bh;
4055 4056
	struct inode *inode;
	long ret;
4057 4058
	int block;

4059 4060 4061 4062 4063 4064 4065
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4066
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4067 4068
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4069 4070
#endif

4071 4072
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4073 4074
		goto bad_inode;
	bh = iloc.bh;
4075
	raw_inode = ext4_raw_inode(&iloc);
4076 4077 4078
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4079
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4095
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4096
			/* this inode is deleted */
4097
			brelse(bh);
4098
			ret = -ESTALE;
4099 4100 4101 4102 4103 4104 4105 4106
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4107
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4108
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4109
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4110
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4111 4112
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4113
	}
4114
	inode->i_size = ext4_isize(raw_inode);
4115 4116 4117 4118 4119 4120 4121
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4122
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4123 4124 4125
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4126
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4127
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4128
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4129
		    EXT4_INODE_SIZE(inode->i_sb)) {
4130
			brelse(bh);
4131
			ret = -EIO;
4132
			goto bad_inode;
4133
		}
4134 4135
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4136 4137
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4138 4139
		} else {
			__le32 *magic = (void *)raw_inode +
4140
					EXT4_GOOD_OLD_INODE_SIZE +
4141
					ei->i_extra_isize;
4142 4143
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4144 4145 4146 4147
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4148 4149 4150 4151 4152
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4153 4154 4155 4156 4157 4158 4159
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4160
	if (S_ISREG(inode->i_mode)) {
4161 4162 4163
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4164
	} else if (S_ISDIR(inode->i_mode)) {
4165 4166
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4167
	} else if (S_ISLNK(inode->i_mode)) {
4168
		if (ext4_inode_is_fast_symlink(inode)) {
4169
			inode->i_op = &ext4_fast_symlink_inode_operations;
4170 4171 4172
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4173 4174
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4175 4176
		}
	} else {
4177
		inode->i_op = &ext4_special_inode_operations;
4178 4179 4180 4181 4182 4183 4184
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4185
	brelse(iloc.bh);
4186
	ext4_set_inode_flags(inode);
4187 4188
	unlock_new_inode(inode);
	return inode;
4189 4190

bad_inode:
4191 4192
	iget_failed(inode);
	return ERR_PTR(ret);
4193 4194
}

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4208
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4210
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4211 4212 4213 4214 4215 4216
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4217 4218 4219 4220
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4221
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4222
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4223
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4224
	} else {
A
Aneesh Kumar K.V 已提交
4225 4226 4227 4228 4229
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4230
	}
4231
	return 0;
4232 4233
}

4234 4235 4236 4237 4238 4239 4240
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4241
static int ext4_do_update_inode(handle_t *handle,
4242
				struct inode *inode,
4243
				struct ext4_iloc *iloc)
4244
{
4245 4246
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4247 4248 4249 4250 4251
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4252 4253
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4254

4255
	ext4_get_inode_flags(ei);
4256
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4257
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4258 4259 4260 4261 4262 4263
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4264
		if (!ei->i_dtime) {
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4282 4283 4284 4285 4286 4287

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4288 4289
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4290
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4291 4292
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4293 4294
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4295 4296
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4297
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4314
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4315 4316 4317 4318
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4333
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4334 4335
		raw_inode->i_block[block] = ei->i_data[block];

4336 4337 4338 4339 4340
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4341
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4342 4343
	}

4344

4345 4346
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
4347 4348
	if (!err)
		err = rc;
4349
	ei->i_state &= ~EXT4_STATE_NEW;
4350 4351

out_brelse:
4352
	brelse(bh);
4353
	ext4_std_error(inode->i_sb, err);
4354 4355 4356 4357
	return err;
}

/*
4358
 * ext4_write_inode()
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4375
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4392
int ext4_write_inode(struct inode *inode, int wait)
4393 4394 4395 4396
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4397
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4398
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4399 4400 4401 4402 4403 4404 4405
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4406
	return ext4_force_commit(inode->i_sb);
4407 4408 4409
}

/*
4410
 * ext4_setattr()
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4424 4425 4426 4427 4428 4429 4430 4431
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4432
 */
4433
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4449 4450
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4451 4452 4453 4454 4455 4456
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
4457
			ext4_journal_stop(handle);
4458 4459 4460 4461 4462 4463 4464 4465
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4466 4467
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4468 4469
	}

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4481 4482 4483 4484
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4485
		handle = ext4_journal_start(inode, 3);
4486 4487 4488 4489 4490
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4491 4492 4493
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4494 4495
		if (!error)
			error = rc;
4496
		ext4_journal_stop(handle);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4513 4514 4515 4516
	}

	rc = inode_setattr(inode, attr);

4517
	/* If inode_setattr's call to ext4_truncate failed to get a
4518 4519 4520
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4521
		ext4_orphan_del(NULL, inode);
4522 4523

	if (!rc && (ia_valid & ATTR_MODE))
4524
		rc = ext4_acl_chmod(inode);
4525 4526

err_out:
4527
	ext4_std_error(inode->i_sb, error);
4528 4529 4530 4531 4532
	if (!error)
		error = rc;
	return error;
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4588 4589
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4590
}
4591

4592
/*
4593 4594 4595
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4596
 *
4597 4598 4599
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4600
 *
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4648 4649
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4650
 *
4651
 * This could be called via ext4_write_begin()
4652
 *
4653
 * We need to consider the worse case, when
4654
 * one new block per extent.
4655
 */
A
Alex Tomas 已提交
4656
int ext4_writepage_trans_blocks(struct inode *inode)
4657
{
4658
	int bpp = ext4_journal_blocks_per_page(inode);
4659 4660
	int ret;

4661
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4662

4663
	/* Account for data blocks for journalled mode */
4664
	if (ext4_should_journal_data(inode))
4665
		ret += bpp;
4666 4667
	return ret;
}
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4683
/*
4684
 * The caller must have previously called ext4_reserve_inode_write().
4685 4686
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4687 4688
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4689 4690 4691
{
	int err = 0;

4692 4693 4694
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4695 4696 4697
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4698
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4699
	err = ext4_do_update_inode(handle, inode, iloc);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4710 4711
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4712 4713 4714
{
	int err = 0;
	if (handle) {
4715
		err = ext4_get_inode_loc(inode, iloc);
4716 4717
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
4718
			err = ext4_journal_get_write_access(handle, iloc->bh);
4719 4720 4721 4722 4723 4724
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
4725
	ext4_std_error(inode->i_sb, err);
4726 4727 4728
	return err;
}

4729 4730 4731 4732
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4733 4734 4735 4736
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4785
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786
{
4787
	struct ext4_iloc iloc;
4788 4789 4790
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4791 4792

	might_sleep();
4793
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4810 4811
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4812
					ext4_warning(inode->i_sb, __func__,
4813 4814 4815
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4816 4817
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4818 4819 4820 4821
				}
			}
		}
	}
4822
	if (!err)
4823
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4824 4825 4826 4827
	return err;
}

/*
4828
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4841
void ext4_dirty_inode(struct inode *inode)
4842
{
4843
	handle_t *current_handle = ext4_journal_current_handle();
4844 4845
	handle_t *handle;

4846
	handle = ext4_journal_start(inode, 2);
4847 4848 4849 4850 4851 4852
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4853
		       __func__);
4854 4855 4856
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4857
		ext4_mark_inode_dirty(handle, inode);
4858
	}
4859
	ext4_journal_stop(handle);
4860 4861 4862 4863 4864 4865 4866 4867
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4868
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4869 4870 4871
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4872
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4873
{
4874
	struct ext4_iloc iloc;
4875 4876 4877

	int err = 0;
	if (handle) {
4878
		err = ext4_get_inode_loc(inode, &iloc);
4879 4880
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4881
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4882
			if (!err)
4883
				err = ext4_journal_dirty_metadata(handle,
4884 4885 4886 4887
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
4888
	ext4_std_error(inode->i_sb, err);
4889 4890 4891 4892
	return err;
}
#endif

4893
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4909
	journal = EXT4_JOURNAL(inode);
4910
	if (is_journal_aborted(journal))
4911 4912
		return -EROFS;

4913 4914
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4925
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4926
	else
4927 4928
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
4929

4930
	jbd2_journal_unlock_updates(journal);
4931 4932 4933

	/* Finally we can mark the inode as dirty. */

4934
	handle = ext4_journal_start(inode, 1);
4935 4936 4937
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4938
	err = ext4_mark_inode_dirty(handle, inode);
4939
	handle->h_sync = 1;
4940 4941
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4942 4943 4944

	return err;
}
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
4956
	void *fsdata;
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4995
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4996 4997 4998
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4999
			len, len, page, fsdata);
5000 5001 5002 5003 5004 5005 5006
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}