huge_memory.c 62.6 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
100
{
101 102 103
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
104

105 106 107
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
108
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 110
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
111
		__free_pages(zero_page, compound_order(zero_page));
112
		return HPAGE_PMD_NR;
113 114 115
	}

	return 0;
116 117
}

118
static struct shrinker huge_zero_page_shrinker = {
119 120
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
121 122 123
	.seeks = DEFAULT_SEEKS,
};

124
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
125

126
static ssize_t triple_flag_store(struct kobject *kobj,
127 128 129
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
130
				 enum transparent_hugepage_flag deferred,
131 132
				 enum transparent_hugepage_flag req_madv)
{
133 134 135 136 137 138 139 140
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
141
		    min(sizeof("always")-1, count))) {
142
		clear_bit(deferred, &transparent_hugepage_flags);
143
		clear_bit(req_madv, &transparent_hugepage_flags);
144
		set_bit(enabled, &transparent_hugepage_flags);
145 146 147
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
148
		clear_bit(deferred, &transparent_hugepage_flags);
149 150 151 152 153
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
154
		clear_bit(deferred, &transparent_hugepage_flags);
155 156 157 158 159 160 161 162 163
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
164 165 166 167 168 169
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
170
}
171

172 173 174 175
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
176 177
	ssize_t ret;

178 179
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
180 181 182 183
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
184
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
185 186 187 188 189
		if (err)
			ret = err;
	}

	return ret;
190 191 192 193
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

194
ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 196 197
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
198 199
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
200
}
201

202
ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 204 205 206
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
207 208 209 210 211 212 213 214 215 216
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
217
		set_bit(flag, &transparent_hugepage_flags);
218
	else
219 220 221 222 223 224 225 226 227 228 229 230 231
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
232 233 234 235 236 237 238 239 240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

241 242 243 244 245
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
246 247 248
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 250 251 252 253
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

254 255 256
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
257
	return single_hugepage_flag_show(kobj, attr, buf,
258 259 260 261 262
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
263
	return single_hugepage_flag_store(kobj, attr, buf, count,
264 265 266 267
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 269 270 271
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
272
	return single_hugepage_flag_show(kobj, attr, buf,
273 274 275 276 277 278
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
279
	return single_hugepage_flag_store(kobj, attr, buf, count,
280 281 282 283 284 285 286 287 288
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
289
	&use_zero_page_attr.attr,
290
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 292
	&shmem_enabled_attr.attr,
#endif
293 294 295 296 297 298 299 300
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
301 302
};

S
Shaohua Li 已提交
303
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
304 305 306
{
	int err;

S
Shaohua Li 已提交
307 308
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
309
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
310
		return -ENOMEM;
A
Andrea Arcangeli 已提交
311 312
	}

S
Shaohua Li 已提交
313
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
314
	if (err) {
315
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
316
		goto delete_obj;
A
Andrea Arcangeli 已提交
317 318
	}

S
Shaohua Li 已提交
319
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
320
	if (err) {
321
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
322
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
323
	}
S
Shaohua Li 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

361 362 363 364 365 366 367 368 369 370
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
371 372
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
373
		goto err_sysfs;
A
Andrea Arcangeli 已提交
374

375
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
376
	if (err)
377
		goto err_slab;
A
Andrea Arcangeli 已提交
378

379 380 381
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
382 383 384
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
385

386 387 388 389 390
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
391
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392
		transparent_hugepage_flags = 0;
393 394
		return 0;
	}
395

396
	err = start_stop_khugepaged();
397 398
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
399

S
Shaohua Li 已提交
400
	return 0;
401
err_khugepaged:
402 403
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
404 405
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
406
	khugepaged_destroy();
407
err_slab:
S
Shaohua Li 已提交
408
	hugepage_exit_sysfs(hugepage_kobj);
409
err_sysfs:
A
Andrea Arcangeli 已提交
410
	return err;
411
}
412
subsys_initcall(hugepage_init);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
440
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
441 442 443 444
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

445
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
446 447 448 449 450 451
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

K
Kirill A. Shutemov 已提交
515 516
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
		gfp_t gfp)
517
{
K
Kirill A. Shutemov 已提交
518
	struct vm_area_struct *vma = fe->vma;
519
	struct mem_cgroup *memcg;
520
	pgtable_t pgtable;
K
Kirill A. Shutemov 已提交
521
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
522

523
	VM_BUG_ON_PAGE(!PageCompound(page), page);
524

K
Kirill A. Shutemov 已提交
525
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
526 527 528 529
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
530

K
Kirill A. Shutemov 已提交
531
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
532
	if (unlikely(!pgtable)) {
533
		mem_cgroup_cancel_charge(page, memcg, true);
534
		put_page(page);
535
		return VM_FAULT_OOM;
536
	}
537 538

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
539 540 541 542 543
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
544 545
	__SetPageUptodate(page);

K
Kirill A. Shutemov 已提交
546 547 548
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_none(*fe->pmd))) {
		spin_unlock(fe->ptl);
549
		mem_cgroup_cancel_charge(page, memcg, true);
550
		put_page(page);
K
Kirill A. Shutemov 已提交
551
		pte_free(vma->vm_mm, pgtable);
552 553
	} else {
		pmd_t entry;
554 555 556 557 558

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

K
Kirill A. Shutemov 已提交
559
			spin_unlock(fe->ptl);
560
			mem_cgroup_cancel_charge(page, memcg, true);
561
			put_page(page);
K
Kirill A. Shutemov 已提交
562 563
			pte_free(vma->vm_mm, pgtable);
			ret = handle_userfault(fe, VM_UFFD_MISSING);
564 565 566 567
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

568 569
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
570
		page_add_new_anon_rmap(page, vma, haddr, true);
571
		mem_cgroup_commit_charge(page, memcg, false, true);
572
		lru_cache_add_active_or_unevictable(page, vma);
K
Kirill A. Shutemov 已提交
573 574 575 576 577
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
		spin_unlock(fe->ptl);
578
		count_vm_event(THP_FAULT_ALLOC);
579 580
	}

581
	return 0;
582 583
}

584
/*
585 586
 * If THP defrag is set to always then directly reclaim/compact as necessary
 * If set to defer then do only background reclaim/compact and defer to khugepaged
587
 * If set to madvise and the VMA is flagged then directly reclaim/compact
588
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
589 590 591
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
592 593 594 595 596 597 598 599 600 601 602 603 604
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
				&transparent_hugepage_flags) && vma_madvised)
		return GFP_TRANSHUGE;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);

	return GFP_TRANSHUGE_LIGHT;
605 606
}

607
/* Caller must hold page table lock. */
608
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
609
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
610
		struct page *zero_page)
611 612
{
	pmd_t entry;
A
Andrew Morton 已提交
613 614
	if (!pmd_none(*pmd))
		return false;
615
	entry = mk_pmd(zero_page, vma->vm_page_prot);
616
	entry = pmd_mkhuge(entry);
617 618
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
619
	set_pmd_at(mm, haddr, pmd, entry);
620
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
621
	return true;
622 623
}

K
Kirill A. Shutemov 已提交
624
int do_huge_pmd_anonymous_page(struct fault_env *fe)
625
{
K
Kirill A. Shutemov 已提交
626
	struct vm_area_struct *vma = fe->vma;
627
	gfp_t gfp;
628
	struct page *page;
K
Kirill A. Shutemov 已提交
629
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
630

631
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
632
		return VM_FAULT_FALLBACK;
633 634
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
635
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
636
		return VM_FAULT_OOM;
K
Kirill A. Shutemov 已提交
637 638
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
			!mm_forbids_zeropage(vma->vm_mm) &&
639 640 641 642
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
643
		int ret;
K
Kirill A. Shutemov 已提交
644
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
645
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
646
			return VM_FAULT_OOM;
647 648
		zero_page = get_huge_zero_page();
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
649
			pte_free(vma->vm_mm, pgtable);
650
			count_vm_event(THP_FAULT_FALLBACK);
651
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
652
		}
K
Kirill A. Shutemov 已提交
653
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
654 655
		ret = 0;
		set = false;
K
Kirill A. Shutemov 已提交
656
		if (pmd_none(*fe->pmd)) {
657
			if (userfaultfd_missing(vma)) {
K
Kirill A. Shutemov 已提交
658 659
				spin_unlock(fe->ptl);
				ret = handle_userfault(fe, VM_UFFD_MISSING);
660 661
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
662 663 664
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
						   haddr, fe->pmd, zero_page);
				spin_unlock(fe->ptl);
665 666 667
				set = true;
			}
		} else
K
Kirill A. Shutemov 已提交
668
			spin_unlock(fe->ptl);
669
		if (!set) {
K
Kirill A. Shutemov 已提交
670
			pte_free(vma->vm_mm, pgtable);
671
			put_huge_zero_page();
672
		}
673
		return ret;
674
	}
675
	gfp = alloc_hugepage_direct_gfpmask(vma);
676
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
677 678
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
679
		return VM_FAULT_FALLBACK;
680
	}
681
	prep_transhuge_page(page);
K
Kirill A. Shutemov 已提交
682
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
683 684
}

685
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
686
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
687 688 689 690 691 692
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
693 694 695
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
696 697 698
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
699
	}
700 701
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
702 703 704 705
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
706
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
707 708 709 710 711 712 713 714 715 716 717
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
718
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
719 720 721 722 723

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
	if (track_pfn_insert(vma, &pgprot, pfn))
		return VM_FAULT_SIGBUS;
724 725
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
726
}
727
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

786 787 788 789
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
790
	spinlock_t *dst_ptl, *src_ptl;
791 792
	struct page *src_page;
	pmd_t pmd;
793
	pgtable_t pgtable = NULL;
794
	int ret = -ENOMEM;
795

796 797 798 799 800 801 802
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
803

804 805 806
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
807 808 809

	ret = -EAGAIN;
	pmd = *src_pmd;
810
	if (unlikely(!pmd_trans_huge(pmd))) {
811 812 813
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
814
	/*
815
	 * When page table lock is held, the huge zero pmd should not be
816 817 818 819
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
820
		struct page *zero_page;
821 822 823 824 825
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
826
		zero_page = get_huge_zero_page();
827
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
828
				zero_page);
829 830 831
		ret = 0;
		goto out_unlock;
	}
832

833 834 835 836 837 838 839
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
840 841 842 843 844 845 846

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
847 848
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
849 850 851 852
out:
	return ret;
}

K
Kirill A. Shutemov 已提交
853
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
854 855 856 857
{
	pmd_t entry;
	unsigned long haddr;

K
Kirill A. Shutemov 已提交
858 859
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
860 861 862
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
K
Kirill A. Shutemov 已提交
863 864 865 866
	haddr = fe->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
				fe->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
867 868

unlock:
K
Kirill A. Shutemov 已提交
869
	spin_unlock(fe->ptl);
870 871
}

K
Kirill A. Shutemov 已提交
872 873
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
		struct page *page)
874
{
K
Kirill A. Shutemov 已提交
875 876
	struct vm_area_struct *vma = fe->vma;
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
877
	struct mem_cgroup *memcg;
878 879 880 881
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
882 883
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
884 885 886 887 888 889 890 891 892

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
893
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
894 895
					       __GFP_OTHER_NODE, vma,
					       fe->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
896
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
897 898
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
899
			if (pages[i])
900
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
901
			while (--i >= 0) {
902 903
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
904 905
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
906 907
				put_page(pages[i]);
			}
908 909 910 911
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
912
		set_page_private(pages[i], (unsigned long)memcg);
913 914 915 916
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
917
				   haddr + PAGE_SIZE * i, vma);
918 919 920 921
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

922 923
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
924
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
925

K
Kirill A. Shutemov 已提交
926 927
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
928
		goto out_free_pages;
929
	VM_BUG_ON_PAGE(!PageHead(page), page);
930

K
Kirill A. Shutemov 已提交
931
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
932 933
	/* leave pmd empty until pte is filled */

K
Kirill A. Shutemov 已提交
934 935
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
936 937

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
938
		pte_t entry;
939 940
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
941 942
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
K
Kirill A. Shutemov 已提交
943
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
944
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
945
		lru_cache_add_active_or_unevictable(pages[i], vma);
K
Kirill A. Shutemov 已提交
946 947 948 949
		fe->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*fe->pte));
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
		pte_unmap(fe->pte);
950 951 952 953
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
K
Kirill A. Shutemov 已提交
954
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
955
	page_remove_rmap(page, true);
K
Kirill A. Shutemov 已提交
956
	spin_unlock(fe->ptl);
957

K
Kirill A. Shutemov 已提交
958
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
959

960 961 962 963 964 965 966
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
K
Kirill A. Shutemov 已提交
967 968
	spin_unlock(fe->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
969
	for (i = 0; i < HPAGE_PMD_NR; i++) {
970 971
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
972
		mem_cgroup_cancel_charge(pages[i], memcg, false);
973
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
974
	}
975 976 977 978
	kfree(pages);
	goto out;
}

K
Kirill A. Shutemov 已提交
979
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
980
{
K
Kirill A. Shutemov 已提交
981
	struct vm_area_struct *vma = fe->vma;
982
	struct page *page = NULL, *new_page;
983
	struct mem_cgroup *memcg;
K
Kirill A. Shutemov 已提交
984
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
985 986
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
987
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
988
	int ret = 0;
989

K
Kirill A. Shutemov 已提交
990
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
991
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
992 993
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
K
Kirill A. Shutemov 已提交
994 995
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
996 997 998
		goto out_unlock;

	page = pmd_page(orig_pmd);
999
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1000 1001
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1002
	 * part.
1003
	 */
1004
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1005 1006 1007
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1008 1009
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1010 1011 1012
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1013
	get_page(page);
K
Kirill A. Shutemov 已提交
1014
	spin_unlock(fe->ptl);
1015
alloc:
1016
	if (transparent_hugepage_enabled(vma) &&
1017
	    !transparent_hugepage_debug_cow()) {
1018
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1019
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1020
	} else
1021 1022
		new_page = NULL;

1023 1024 1025
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1026
		if (!page) {
K
Kirill A. Shutemov 已提交
1027
			split_huge_pmd(vma, fe->pmd, fe->address);
1028
			ret |= VM_FAULT_FALLBACK;
1029
		} else {
K
Kirill A. Shutemov 已提交
1030
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1031
			if (ret & VM_FAULT_OOM) {
K
Kirill A. Shutemov 已提交
1032
				split_huge_pmd(vma, fe->pmd, fe->address);
1033 1034
				ret |= VM_FAULT_FALLBACK;
			}
1035
			put_page(page);
1036
		}
1037
		count_vm_event(THP_FAULT_FALLBACK);
1038 1039 1040
		goto out;
	}

K
Kirill A. Shutemov 已提交
1041 1042
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1043
		put_page(new_page);
K
Kirill A. Shutemov 已提交
1044 1045
		split_huge_pmd(vma, fe->pmd, fe->address);
		if (page)
1046
			put_page(page);
1047
		ret |= VM_FAULT_FALLBACK;
1048
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1049 1050 1051
		goto out;
	}

1052 1053
	count_vm_event(THP_FAULT_ALLOC);

1054
	if (!page)
1055 1056 1057
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1058 1059
	__SetPageUptodate(new_page);

1060 1061
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1062
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1063

K
Kirill A. Shutemov 已提交
1064
	spin_lock(fe->ptl);
1065
	if (page)
1066
		put_page(page);
K
Kirill A. Shutemov 已提交
1067 1068
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
		spin_unlock(fe->ptl);
1069
		mem_cgroup_cancel_charge(new_page, memcg, true);
1070
		put_page(new_page);
1071
		goto out_mn;
A
Andrea Arcangeli 已提交
1072
	} else {
1073
		pmd_t entry;
1074 1075
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1076
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1077
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1078
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1079
		lru_cache_add_active_or_unevictable(new_page, vma);
K
Kirill A. Shutemov 已提交
1080 1081
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1082
		if (!page) {
K
Kirill A. Shutemov 已提交
1083
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1084 1085
			put_huge_zero_page();
		} else {
1086
			VM_BUG_ON_PAGE(!PageHead(page), page);
1087
			page_remove_rmap(page, true);
1088 1089
			put_page(page);
		}
1090 1091
		ret |= VM_FAULT_WRITE;
	}
K
Kirill A. Shutemov 已提交
1092
	spin_unlock(fe->ptl);
1093
out_mn:
K
Kirill A. Shutemov 已提交
1094
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1095 1096
out:
	return ret;
1097
out_unlock:
K
Kirill A. Shutemov 已提交
1098
	spin_unlock(fe->ptl);
1099
	return ret;
1100 1101
}

1102
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1103 1104 1105 1106
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1107
	struct mm_struct *mm = vma->vm_mm;
1108 1109
	struct page *page = NULL;

1110
	assert_spin_locked(pmd_lockptr(mm, pmd));
1111 1112 1113 1114

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1115 1116 1117 1118
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1119
	/* Full NUMA hinting faults to serialise migration in fault paths */
1120
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1121 1122
		goto out;

1123
	page = pmd_page(*pmd);
1124
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1125 1126
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1127
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1128 1129 1130 1131
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1132 1133
		 * For anon THP:
		 *
1134 1135 1136 1137 1138 1139 1140
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1141 1142 1143 1144 1145 1146
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1147
		 */
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1159
	}
1160
skip_mlock:
1161
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1162
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1163
	if (flags & FOLL_GET)
1164
		get_page(page);
1165 1166 1167 1168 1169

out:
	return page;
}

1170
/* NUMA hinting page fault entry point for trans huge pmds */
K
Kirill A. Shutemov 已提交
1171
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1172
{
K
Kirill A. Shutemov 已提交
1173
	struct vm_area_struct *vma = fe->vma;
1174
	struct anon_vma *anon_vma = NULL;
1175
	struct page *page;
K
Kirill A. Shutemov 已提交
1176
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1177
	int page_nid = -1, this_nid = numa_node_id();
1178
	int target_nid, last_cpupid = -1;
1179 1180
	bool page_locked;
	bool migrated = false;
1181
	bool was_writable;
1182
	int flags = 0;
1183

K
Kirill A. Shutemov 已提交
1184 1185
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1186 1187
		goto out_unlock;

1188 1189 1190 1191 1192
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
K
Kirill A. Shutemov 已提交
1193 1194 1195
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
		page = pmd_page(*fe->pmd);
		spin_unlock(fe->ptl);
1196
		wait_on_page_locked(page);
1197 1198 1199
		goto out;
	}

1200
	page = pmd_page(pmd);
1201
	BUG_ON(is_huge_zero_page(page));
1202
	page_nid = page_to_nid(page);
1203
	last_cpupid = page_cpupid_last(page);
1204
	count_vm_numa_event(NUMA_HINT_FAULTS);
1205
	if (page_nid == this_nid) {
1206
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1207 1208
		flags |= TNF_FAULT_LOCAL;
	}
1209

1210
	/* See similar comment in do_numa_page for explanation */
1211
	if (!pmd_write(pmd))
1212 1213
		flags |= TNF_NO_GROUP;

1214 1215 1216 1217
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1218 1219 1220 1221
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1222
		if (page_locked)
1223
			goto clear_pmdnuma;
1224
	}
1225

1226
	/* Migration could have started since the pmd_trans_migrating check */
1227
	if (!page_locked) {
K
Kirill A. Shutemov 已提交
1228
		spin_unlock(fe->ptl);
1229
		wait_on_page_locked(page);
1230
		page_nid = -1;
1231 1232 1233
		goto out;
	}

1234 1235 1236 1237
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1238
	get_page(page);
K
Kirill A. Shutemov 已提交
1239
	spin_unlock(fe->ptl);
1240
	anon_vma = page_lock_anon_vma_read(page);
1241

P
Peter Zijlstra 已提交
1242
	/* Confirm the PMD did not change while page_table_lock was released */
K
Kirill A. Shutemov 已提交
1243 1244
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1245 1246
		unlock_page(page);
		put_page(page);
1247
		page_nid = -1;
1248
		goto out_unlock;
1249
	}
1250

1251 1252 1253 1254 1255 1256 1257
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1258 1259
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1260
	 * and access rights restored.
1261
	 */
K
Kirill A. Shutemov 已提交
1262 1263 1264
	spin_unlock(fe->ptl);
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
				fe->pmd, pmd, fe->address, page, target_nid);
1265 1266
	if (migrated) {
		flags |= TNF_MIGRATED;
1267
		page_nid = target_nid;
1268 1269
	} else
		flags |= TNF_MIGRATE_FAIL;
1270

1271
	goto out;
1272
clear_pmdnuma:
1273
	BUG_ON(!PageLocked(page));
1274
	was_writable = pmd_write(pmd);
1275
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1276
	pmd = pmd_mkyoung(pmd);
1277 1278
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
K
Kirill A. Shutemov 已提交
1279 1280
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1281
	unlock_page(page);
1282
out_unlock:
K
Kirill A. Shutemov 已提交
1283
	spin_unlock(fe->ptl);
1284 1285 1286 1287 1288

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1289
	if (page_nid != -1)
K
Kirill A. Shutemov 已提交
1290
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1291

1292 1293 1294
	return 0;
}

1295 1296 1297 1298 1299
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1300 1301 1302 1303 1304 1305
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1306
	bool ret = false;
1307

1308 1309
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1310
		goto out_unlocked;
1311 1312

	orig_pmd = *pmd;
1313
	if (is_huge_zero_pmd(orig_pmd))
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1334
		split_huge_page(page);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1356
	ret = true;
1357 1358 1359 1360 1361 1362
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1363
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1364
		 pmd_t *pmd, unsigned long addr)
1365
{
1366
	pmd_t orig_pmd;
1367
	spinlock_t *ptl;
1368

1369 1370
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1384
			tlb_remove_page(tlb, pmd_page(orig_pmd));
1385 1386 1387 1388
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1389
		tlb_remove_page(tlb, pmd_page(orig_pmd));
1390 1391
	} else {
		struct page *page = pmd_page(orig_pmd);
1392
		page_remove_rmap(page, true);
1393 1394
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1395 1396 1397 1398 1399 1400 1401 1402 1403
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1404
		spin_unlock(ptl);
1405
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1406
	}
1407
	return 1;
1408 1409
}

1410
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1411 1412 1413
		  unsigned long new_addr, unsigned long old_end,
		  pmd_t *old_pmd, pmd_t *new_pmd)
{
1414
	spinlock_t *old_ptl, *new_ptl;
1415 1416 1417 1418 1419
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1420
	    old_end - old_addr < HPAGE_PMD_SIZE)
1421
		return false;
1422 1423 1424 1425 1426 1427 1428

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1429
		return false;
1430 1431
	}

1432 1433 1434 1435
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1436 1437
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1438 1439 1440
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1441
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1442
		VM_BUG_ON(!pmd_none(*new_pmd));
1443

1444 1445
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
				vma_is_anonymous(vma)) {
1446
			pgtable_t pgtable;
1447 1448 1449
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1450 1451 1452
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1453
		spin_unlock(old_ptl);
1454
		return true;
1455
	}
1456
	return false;
1457 1458
}

1459 1460 1461 1462 1463 1464
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1465
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1466
		unsigned long addr, pgprot_t newprot, int prot_numa)
1467 1468
{
	struct mm_struct *mm = vma->vm_mm;
1469
	spinlock_t *ptl;
1470 1471
	int ret = 0;

1472 1473
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1474
		pmd_t entry;
1475
		bool preserve_write = prot_numa && pmd_write(*pmd);
1476
		ret = 1;
1477 1478 1479 1480 1481 1482 1483 1484

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1485
			return ret;
1486 1487
		}

1488
		if (!prot_numa || !pmd_protnone(*pmd)) {
1489
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1490
			entry = pmd_modify(entry, newprot);
1491 1492
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1493 1494
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1495 1496
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1497
		}
1498
		spin_unlock(ptl);
1499 1500 1501 1502 1503 1504
	}

	return ret;
}

/*
1505
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1506
 *
1507 1508
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1509
 */
1510
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1511
{
1512 1513
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1514
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1515 1516 1517
		return ptl;
	spin_unlock(ptl);
	return NULL;
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
	put_huge_zero_page();
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1549
		unsigned long haddr, bool freeze)
1550 1551 1552 1553 1554
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1555
	bool young, write, dirty, soft_dirty;
1556
	unsigned long addr;
1557 1558 1559 1560 1561
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1562
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1563 1564 1565

	count_vm_event(THP_SPLIT_PMD);

1566 1567
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1568 1569
		if (is_huge_zero_pmd(_pmd))
			put_huge_zero_page();
1570 1571 1572 1573 1574 1575 1576 1577
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1578 1579 1580 1581 1582 1583 1584
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1585
	page_ref_add(page, HPAGE_PMD_NR - 1);
1586 1587
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1588
	dirty = pmd_dirty(*pmd);
1589
	soft_dirty = pmd_soft_dirty(*pmd);
1590

1591
	pmdp_huge_split_prepare(vma, haddr, pmd);
1592 1593 1594
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1595
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1596 1597 1598 1599 1600 1601
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1602 1603 1604 1605
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1606 1607
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1608 1609
		} else {
			entry = mk_pte(page + i, vma->vm_page_prot);
1610
			entry = maybe_mkwrite(entry, vma);
1611 1612 1613 1614
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1615 1616
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1617
		}
1618 1619
		if (dirty)
			SetPageDirty(page + i);
1620
		pte = pte_offset_map(&_pmd, addr);
1621
		BUG_ON(!pte_none(*pte));
1622
		set_pte_at(mm, addr, pte, entry);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1638
		__dec_node_page_state(page, NR_ANON_THPS);
1639 1640 1641 1642 1643 1644 1645 1646
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1669
	pmd_populate(mm, pmd, pgtable);
1670 1671

	if (freeze) {
1672
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1673 1674 1675 1676
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1677 1678 1679
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1680
		unsigned long address, bool freeze, struct page *page)
1681 1682 1683 1684 1685 1686 1687
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1688 1689 1690 1691 1692 1693 1694 1695 1696

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1697
	if (pmd_trans_huge(*pmd)) {
1698
		page = pmd_page(*pmd);
1699
		if (PageMlocked(page))
1700
			clear_page_mlock(page);
1701
	} else if (!pmd_devmap(*pmd))
1702
		goto out;
1703
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1704
out:
1705 1706 1707 1708
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1709 1710
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1711
{
1712 1713
	pgd_t *pgd;
	pud_t *pud;
1714 1715
	pmd_t *pmd;

1716
	pgd = pgd_offset(vma->vm_mm, address);
1717 1718 1719 1720 1721 1722 1723 1724
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1725

1726
	__split_huge_pmd(vma, pmd, address, freeze, page);
1727 1728
}

1729
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1742
		split_huge_pmd_address(vma, start, false, NULL);
1743 1744 1745 1746 1747 1748 1749 1750 1751

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1752
		split_huge_pmd_address(vma, end, false, NULL);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1766
			split_huge_pmd_address(next, nstart, false, NULL);
1767 1768
	}
}
1769

1770
static void freeze_page(struct page *page)
1771
{
1772 1773
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1774
	int i, ret;
1775 1776 1777

	VM_BUG_ON_PAGE(!PageHead(page), page);

1778 1779 1780
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1781 1782 1783 1784 1785 1786
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1787

1788
		ret = try_to_unmap(page + i, ttu_flags);
1789
	}
1790
	VM_BUG_ON_PAGE(ret, page + i - 1);
1791 1792
}

1793
static void unfreeze_page(struct page *page)
1794
{
1795
	int i;
1796

1797 1798
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1799 1800
}

1801
static void __split_huge_page_tail(struct page *head, int tail,
1802 1803 1804 1805
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1806
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1807
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1808 1809

	/*
1810
	 * tail_page->_refcount is zero and not changing from under us. But
1811
	 * get_page_unless_zero() may be running from under us on the
1812 1813
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1814 1815 1816 1817
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1818
	 * it's safer to use atomic_inc()/atomic_add().
1819
	 */
1820 1821 1822 1823 1824 1825
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1826 1827 1828 1829 1830 1831 1832 1833 1834

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1835 1836
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1852
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1853 1854 1855 1856 1857 1858 1859 1860
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1861 1862
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1863 1864 1865 1866
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1867
	pgoff_t end = -1;
1868
	int i;
1869

M
Mel Gorman 已提交
1870
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1871 1872 1873 1874

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1875 1876 1877 1878
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1879
		__split_huge_page_tail(head, i, lruvec, list);
1880 1881 1882 1883
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1884 1885
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1886 1887 1888
			put_page(head + i);
		}
	}
1889 1890

	ClearPageCompound(head);
1891 1892 1893 1894 1895 1896 1897 1898 1899
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

1900
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1901

1902
	unfreeze_page(head);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1921 1922
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1923
	int i, compound, ret;
1924 1925 1926 1927 1928 1929

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1930
	compound = compound_mapcount(page);
1931
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
1932 1933
		return compound;
	ret = compound;
1934 1935
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
1936 1937 1938
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
1939 1940 1941 1942 1943
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2024
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2025 2026 2027
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2028
	bool mlocked;
2029
	unsigned long flags;
2030 2031 2032 2033 2034 2035

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2066 2067 2068 2069 2070 2071
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2072
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2073 2074 2075 2076
		ret = -EBUSY;
		goto out_unlock;
	}

2077
	mlocked = PageMlocked(page);
2078
	freeze_page(head);
2079 2080
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2081 2082 2083 2084
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2085
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2086
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2103
	/* Prevent deferred_split_scan() touching ->_refcount */
2104
	spin_lock(&pgdata->split_queue_lock);
2105 2106
	count = page_count(head);
	mapcount = total_mapcount(head);
2107
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2108
		if (!list_empty(page_deferred_list(head))) {
2109
			pgdata->split_queue_len--;
2110 2111
			list_del(page_deferred_list(head));
		}
2112
		if (mapping)
2113
			__dec_node_page_state(page, NR_SHMEM_THPS);
2114 2115
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2116 2117
		ret = 0;
	} else {
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2129
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2130
		unfreeze_page(head);
2131 2132 2133 2134
		ret = -EBUSY;
	}

out_unlock:
2135 2136 2137 2138 2139 2140
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2141 2142 2143 2144
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2145 2146 2147

void free_transhuge_page(struct page *page)
{
2148
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2149 2150
	unsigned long flags;

2151
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2152
	if (!list_empty(page_deferred_list(page))) {
2153
		pgdata->split_queue_len--;
2154 2155
		list_del(page_deferred_list(page));
	}
2156
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2157 2158 2159 2160 2161
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2162
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2163 2164 2165 2166
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2167
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2168
	if (list_empty(page_deferred_list(page))) {
2169
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2170 2171
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2172
	}
2173
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2174 2175 2176 2177 2178
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2179
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2180
	return ACCESS_ONCE(pgdata->split_queue_len);
2181 2182 2183 2184 2185
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2186
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2187 2188 2189 2190 2191
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2192
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2193
	/* Take pin on all head pages to avoid freeing them under us */
2194
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2195 2196
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2197 2198 2199 2200
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2201
			list_del_init(page_deferred_list(page));
2202
			pgdata->split_queue_len--;
2203
		}
2204 2205
		if (!--sc->nr_to_scan)
			break;
2206
	}
2207
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2219 2220 2221
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2222

2223 2224 2225 2226 2227 2228 2229
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2230 2231 2232 2233 2234 2235
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2236
	.flags = SHRINKER_NUMA_AWARE,
2237
};
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2263
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2276
	pr_info("%lu of %lu THP split\n", split, total);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2287
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2288 2289 2290 2291 2292 2293 2294
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif