huge_memory.c 61.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
100
{
101 102 103
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
104

105 106 107
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
108
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 110
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
111
		__free_pages(zero_page, compound_order(zero_page));
112
		return HPAGE_PMD_NR;
113 114 115
	}

	return 0;
116 117
}

118
static struct shrinker huge_zero_page_shrinker = {
119 120
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
121 122 123
	.seeks = DEFAULT_SEEKS,
};

124
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
125

126
static ssize_t triple_flag_store(struct kobject *kobj,
127 128 129
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
130
				 enum transparent_hugepage_flag deferred,
131 132
				 enum transparent_hugepage_flag req_madv)
{
133 134 135 136 137 138 139 140
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
141
		    min(sizeof("always")-1, count))) {
142
		clear_bit(deferred, &transparent_hugepage_flags);
143
		clear_bit(req_madv, &transparent_hugepage_flags);
144
		set_bit(enabled, &transparent_hugepage_flags);
145 146 147
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
148
		clear_bit(deferred, &transparent_hugepage_flags);
149 150 151 152 153
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
154
		clear_bit(deferred, &transparent_hugepage_flags);
155 156 157 158 159 160 161 162 163
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
164 165 166 167 168 169
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
170
}
171

172 173 174 175
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
176 177
	ssize_t ret;

178 179
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
180 181 182 183
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
184
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
185 186 187 188 189
		if (err)
			ret = err;
	}

	return ret;
190 191 192 193
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

194
ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 196 197
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
198 199
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
200
}
201

202
ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 204 205 206
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
207 208 209 210 211 212 213 214 215 216
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
217
		set_bit(flag, &transparent_hugepage_flags);
218
	else
219 220 221 222 223 224 225 226 227 228 229 230 231
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
232 233 234 235 236 237 238 239 240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

241 242 243 244 245
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
246 247 248
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 250 251 252 253
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

254 255 256
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
257
	return single_hugepage_flag_show(kobj, attr, buf,
258 259 260 261 262
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
263
	return single_hugepage_flag_store(kobj, attr, buf, count,
264 265 266 267
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 269 270 271
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
272
	return single_hugepage_flag_show(kobj, attr, buf,
273 274 275 276 277 278
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
279
	return single_hugepage_flag_store(kobj, attr, buf, count,
280 281 282 283 284 285 286 287 288
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
289
	&use_zero_page_attr.attr,
290 291 292
#ifdef CONFIG_SHMEM
	&shmem_enabled_attr.attr,
#endif
293 294 295 296 297 298 299 300
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
301 302
};

S
Shaohua Li 已提交
303
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
304 305 306
{
	int err;

S
Shaohua Li 已提交
307 308
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
309
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
310
		return -ENOMEM;
A
Andrea Arcangeli 已提交
311 312
	}

S
Shaohua Li 已提交
313
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
314
	if (err) {
315
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
316
		goto delete_obj;
A
Andrea Arcangeli 已提交
317 318
	}

S
Shaohua Li 已提交
319
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
320
	if (err) {
321
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
322
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
323
	}
S
Shaohua Li 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

361 362 363 364 365 366 367 368 369 370
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
371 372
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
373
		goto err_sysfs;
A
Andrea Arcangeli 已提交
374

375
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
376
	if (err)
377
		goto err_slab;
A
Andrea Arcangeli 已提交
378

379 380 381
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
382 383 384
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
385

386 387 388 389 390
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
391
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392
		transparent_hugepage_flags = 0;
393 394
		return 0;
	}
395

396
	err = start_stop_khugepaged();
397 398
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
399

S
Shaohua Li 已提交
400
	return 0;
401
err_khugepaged:
402 403
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
404 405
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
406
	khugepaged_destroy();
407
err_slab:
S
Shaohua Li 已提交
408
	hugepage_exit_sysfs(hugepage_kobj);
409
err_sysfs:
A
Andrea Arcangeli 已提交
410
	return err;
411
}
412
subsys_initcall(hugepage_init);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
440
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
441 442 443 444
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

445
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
446 447 448 449 450 451
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

K
Kirill A. Shutemov 已提交
472 473
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
		gfp_t gfp)
474
{
K
Kirill A. Shutemov 已提交
475
	struct vm_area_struct *vma = fe->vma;
476
	struct mem_cgroup *memcg;
477
	pgtable_t pgtable;
K
Kirill A. Shutemov 已提交
478
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
479

480
	VM_BUG_ON_PAGE(!PageCompound(page), page);
481

K
Kirill A. Shutemov 已提交
482
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
483 484 485 486
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
487

K
Kirill A. Shutemov 已提交
488
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
489
	if (unlikely(!pgtable)) {
490
		mem_cgroup_cancel_charge(page, memcg, true);
491
		put_page(page);
492
		return VM_FAULT_OOM;
493
	}
494 495

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
496 497 498 499 500
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
501 502
	__SetPageUptodate(page);

K
Kirill A. Shutemov 已提交
503 504 505
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_none(*fe->pmd))) {
		spin_unlock(fe->ptl);
506
		mem_cgroup_cancel_charge(page, memcg, true);
507
		put_page(page);
K
Kirill A. Shutemov 已提交
508
		pte_free(vma->vm_mm, pgtable);
509 510
	} else {
		pmd_t entry;
511 512 513 514 515

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

K
Kirill A. Shutemov 已提交
516
			spin_unlock(fe->ptl);
517
			mem_cgroup_cancel_charge(page, memcg, true);
518
			put_page(page);
K
Kirill A. Shutemov 已提交
519 520
			pte_free(vma->vm_mm, pgtable);
			ret = handle_userfault(fe, VM_UFFD_MISSING);
521 522 523 524
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

525 526
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
527
		page_add_new_anon_rmap(page, vma, haddr, true);
528
		mem_cgroup_commit_charge(page, memcg, false, true);
529
		lru_cache_add_active_or_unevictable(page, vma);
K
Kirill A. Shutemov 已提交
530 531 532 533 534
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
		spin_unlock(fe->ptl);
535
		count_vm_event(THP_FAULT_ALLOC);
536 537
	}

538
	return 0;
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * If THP is set to always then directly reclaim/compact as necessary
 * If set to defer then do no reclaim and defer to khugepaged
 * If set to madvise and the VMA is flagged then directly reclaim/compact
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
	gfp_t reclaim_flags = 0;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
	    (vma->vm_flags & VM_HUGEPAGE))
		reclaim_flags = __GFP_DIRECT_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		reclaim_flags = __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		reclaim_flags = __GFP_DIRECT_RECLAIM;

	return GFP_TRANSHUGE | reclaim_flags;
}

561
/* Caller must hold page table lock. */
562
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
563
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
564
		struct page *zero_page)
565 566
{
	pmd_t entry;
A
Andrew Morton 已提交
567 568
	if (!pmd_none(*pmd))
		return false;
569
	entry = mk_pmd(zero_page, vma->vm_page_prot);
570
	entry = pmd_mkhuge(entry);
571 572
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
573
	set_pmd_at(mm, haddr, pmd, entry);
574
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
575
	return true;
576 577
}

K
Kirill A. Shutemov 已提交
578
int do_huge_pmd_anonymous_page(struct fault_env *fe)
579
{
K
Kirill A. Shutemov 已提交
580
	struct vm_area_struct *vma = fe->vma;
581
	gfp_t gfp;
582
	struct page *page;
K
Kirill A. Shutemov 已提交
583
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
584

585
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
586
		return VM_FAULT_FALLBACK;
587 588
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
589
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
590
		return VM_FAULT_OOM;
K
Kirill A. Shutemov 已提交
591 592
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
			!mm_forbids_zeropage(vma->vm_mm) &&
593 594 595 596
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
597
		int ret;
K
Kirill A. Shutemov 已提交
598
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
599
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
600
			return VM_FAULT_OOM;
601 602
		zero_page = get_huge_zero_page();
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
603
			pte_free(vma->vm_mm, pgtable);
604
			count_vm_event(THP_FAULT_FALLBACK);
605
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
606
		}
K
Kirill A. Shutemov 已提交
607
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
608 609
		ret = 0;
		set = false;
K
Kirill A. Shutemov 已提交
610
		if (pmd_none(*fe->pmd)) {
611
			if (userfaultfd_missing(vma)) {
K
Kirill A. Shutemov 已提交
612 613
				spin_unlock(fe->ptl);
				ret = handle_userfault(fe, VM_UFFD_MISSING);
614 615
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
616 617 618
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
						   haddr, fe->pmd, zero_page);
				spin_unlock(fe->ptl);
619 620 621
				set = true;
			}
		} else
K
Kirill A. Shutemov 已提交
622
			spin_unlock(fe->ptl);
623
		if (!set) {
K
Kirill A. Shutemov 已提交
624
			pte_free(vma->vm_mm, pgtable);
625
			put_huge_zero_page();
626
		}
627
		return ret;
628
	}
629
	gfp = alloc_hugepage_direct_gfpmask(vma);
630
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
631 632
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
633
		return VM_FAULT_FALLBACK;
634
	}
635
	prep_transhuge_page(page);
K
Kirill A. Shutemov 已提交
636
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
637 638
}

639
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
640
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
641 642 643 644 645 646
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
647 648 649
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
650 651 652
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
653
	}
654 655
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
656 657 658 659
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
660
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
661 662 663 664 665 666 667 668 669 670 671
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
672
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
673 674 675 676 677

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
	if (track_pfn_insert(vma, &pgprot, pfn))
		return VM_FAULT_SIGBUS;
678 679
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
680
}
681
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

740 741 742 743
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
744
	spinlock_t *dst_ptl, *src_ptl;
745 746
	struct page *src_page;
	pmd_t pmd;
747
	pgtable_t pgtable = NULL;
748
	int ret = -ENOMEM;
749

750 751 752 753 754 755 756
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
757

758 759 760
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
761 762 763

	ret = -EAGAIN;
	pmd = *src_pmd;
764
	if (unlikely(!pmd_trans_huge(pmd))) {
765 766 767
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
768
	/*
769
	 * When page table lock is held, the huge zero pmd should not be
770 771 772 773
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
774
		struct page *zero_page;
775 776 777 778 779
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
780
		zero_page = get_huge_zero_page();
781
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
782
				zero_page);
783 784 785
		ret = 0;
		goto out_unlock;
	}
786

787 788 789 790 791 792 793
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
794 795 796 797 798 799 800

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
801 802
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
803 804 805 806
out:
	return ret;
}

K
Kirill A. Shutemov 已提交
807
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
808 809 810 811
{
	pmd_t entry;
	unsigned long haddr;

K
Kirill A. Shutemov 已提交
812 813
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
814 815 816
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
K
Kirill A. Shutemov 已提交
817 818 819 820
	haddr = fe->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
				fe->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
821 822

unlock:
K
Kirill A. Shutemov 已提交
823
	spin_unlock(fe->ptl);
824 825
}

K
Kirill A. Shutemov 已提交
826 827
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
		struct page *page)
828
{
K
Kirill A. Shutemov 已提交
829 830
	struct vm_area_struct *vma = fe->vma;
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
831
	struct mem_cgroup *memcg;
832 833 834 835
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
836 837
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
838 839 840 841 842 843 844 845 846

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
847
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
848 849
					       __GFP_OTHER_NODE, vma,
					       fe->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
850
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
851 852
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
853
			if (pages[i])
854
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
855
			while (--i >= 0) {
856 857
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
858 859
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
860 861
				put_page(pages[i]);
			}
862 863 864 865
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
866
		set_page_private(pages[i], (unsigned long)memcg);
867 868 869 870
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
871
				   haddr + PAGE_SIZE * i, vma);
872 873 874 875
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

876 877
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
878
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
879

K
Kirill A. Shutemov 已提交
880 881
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
882
		goto out_free_pages;
883
	VM_BUG_ON_PAGE(!PageHead(page), page);
884

K
Kirill A. Shutemov 已提交
885
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
886 887
	/* leave pmd empty until pte is filled */

K
Kirill A. Shutemov 已提交
888 889
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
890 891

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
892
		pte_t entry;
893 894
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
895 896
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
K
Kirill A. Shutemov 已提交
897
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
898
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
899
		lru_cache_add_active_or_unevictable(pages[i], vma);
K
Kirill A. Shutemov 已提交
900 901 902 903
		fe->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*fe->pte));
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
		pte_unmap(fe->pte);
904 905 906 907
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
K
Kirill A. Shutemov 已提交
908
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
909
	page_remove_rmap(page, true);
K
Kirill A. Shutemov 已提交
910
	spin_unlock(fe->ptl);
911

K
Kirill A. Shutemov 已提交
912
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
913

914 915 916 917 918 919 920
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
K
Kirill A. Shutemov 已提交
921 922
	spin_unlock(fe->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
923
	for (i = 0; i < HPAGE_PMD_NR; i++) {
924 925
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
926
		mem_cgroup_cancel_charge(pages[i], memcg, false);
927
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
928
	}
929 930 931 932
	kfree(pages);
	goto out;
}

K
Kirill A. Shutemov 已提交
933
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
934
{
K
Kirill A. Shutemov 已提交
935
	struct vm_area_struct *vma = fe->vma;
936
	struct page *page = NULL, *new_page;
937
	struct mem_cgroup *memcg;
K
Kirill A. Shutemov 已提交
938
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
939 940
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
941
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
942
	int ret = 0;
943

K
Kirill A. Shutemov 已提交
944
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
945
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
946 947
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
K
Kirill A. Shutemov 已提交
948 949
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
950 951 952
		goto out_unlock;

	page = pmd_page(orig_pmd);
953
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
954 955
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
956
	 * part.
957
	 */
958
	if (page_trans_huge_mapcount(page, NULL) == 1) {
959 960 961
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
962 963
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
964 965 966
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
967
	get_page(page);
K
Kirill A. Shutemov 已提交
968
	spin_unlock(fe->ptl);
969
alloc:
970
	if (transparent_hugepage_enabled(vma) &&
971
	    !transparent_hugepage_debug_cow()) {
972
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
973
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
974
	} else
975 976
		new_page = NULL;

977 978 979
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
980
		if (!page) {
K
Kirill A. Shutemov 已提交
981
			split_huge_pmd(vma, fe->pmd, fe->address);
982
			ret |= VM_FAULT_FALLBACK;
983
		} else {
K
Kirill A. Shutemov 已提交
984
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
985
			if (ret & VM_FAULT_OOM) {
K
Kirill A. Shutemov 已提交
986
				split_huge_pmd(vma, fe->pmd, fe->address);
987 988
				ret |= VM_FAULT_FALLBACK;
			}
989
			put_page(page);
990
		}
991
		count_vm_event(THP_FAULT_FALLBACK);
992 993 994
		goto out;
	}

K
Kirill A. Shutemov 已提交
995 996
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
997
		put_page(new_page);
K
Kirill A. Shutemov 已提交
998 999
		split_huge_pmd(vma, fe->pmd, fe->address);
		if (page)
1000
			put_page(page);
1001
		ret |= VM_FAULT_FALLBACK;
1002
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1003 1004 1005
		goto out;
	}

1006 1007
	count_vm_event(THP_FAULT_ALLOC);

1008
	if (!page)
1009 1010 1011
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1012 1013
	__SetPageUptodate(new_page);

1014 1015
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1016
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1017

K
Kirill A. Shutemov 已提交
1018
	spin_lock(fe->ptl);
1019
	if (page)
1020
		put_page(page);
K
Kirill A. Shutemov 已提交
1021 1022
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
		spin_unlock(fe->ptl);
1023
		mem_cgroup_cancel_charge(new_page, memcg, true);
1024
		put_page(new_page);
1025
		goto out_mn;
A
Andrea Arcangeli 已提交
1026
	} else {
1027
		pmd_t entry;
1028 1029
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1030
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1031
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1032
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1033
		lru_cache_add_active_or_unevictable(new_page, vma);
K
Kirill A. Shutemov 已提交
1034 1035
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1036
		if (!page) {
K
Kirill A. Shutemov 已提交
1037
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1038 1039
			put_huge_zero_page();
		} else {
1040
			VM_BUG_ON_PAGE(!PageHead(page), page);
1041
			page_remove_rmap(page, true);
1042 1043
			put_page(page);
		}
1044 1045
		ret |= VM_FAULT_WRITE;
	}
K
Kirill A. Shutemov 已提交
1046
	spin_unlock(fe->ptl);
1047
out_mn:
K
Kirill A. Shutemov 已提交
1048
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1049 1050
out:
	return ret;
1051
out_unlock:
K
Kirill A. Shutemov 已提交
1052
	spin_unlock(fe->ptl);
1053
	return ret;
1054 1055
}

1056
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1057 1058 1059 1060
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1061
	struct mm_struct *mm = vma->vm_mm;
1062 1063
	struct page *page = NULL;

1064
	assert_spin_locked(pmd_lockptr(mm, pmd));
1065 1066 1067 1068

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1069 1070 1071 1072
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1073
	/* Full NUMA hinting faults to serialise migration in fault paths */
1074
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1075 1076
		goto out;

1077
	page = pmd_page(*pmd);
1078
	VM_BUG_ON_PAGE(!PageHead(page), page);
1079 1080
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1081
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1082 1083 1084 1085
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1086 1087
		 * For anon THP:
		 *
1088 1089 1090 1091 1092 1093 1094
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1095 1096 1097 1098 1099 1100
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1101
		 */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1113
	}
1114
skip_mlock:
1115
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1116
	VM_BUG_ON_PAGE(!PageCompound(page), page);
1117
	if (flags & FOLL_GET)
1118
		get_page(page);
1119 1120 1121 1122 1123

out:
	return page;
}

1124
/* NUMA hinting page fault entry point for trans huge pmds */
K
Kirill A. Shutemov 已提交
1125
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1126
{
K
Kirill A. Shutemov 已提交
1127
	struct vm_area_struct *vma = fe->vma;
1128
	struct anon_vma *anon_vma = NULL;
1129
	struct page *page;
K
Kirill A. Shutemov 已提交
1130
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1131
	int page_nid = -1, this_nid = numa_node_id();
1132
	int target_nid, last_cpupid = -1;
1133 1134
	bool page_locked;
	bool migrated = false;
1135
	bool was_writable;
1136
	int flags = 0;
1137

1138 1139 1140
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

K
Kirill A. Shutemov 已提交
1141 1142
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1143 1144
		goto out_unlock;

1145 1146 1147 1148 1149
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
K
Kirill A. Shutemov 已提交
1150 1151 1152
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
		page = pmd_page(*fe->pmd);
		spin_unlock(fe->ptl);
1153
		wait_on_page_locked(page);
1154 1155 1156
		goto out;
	}

1157
	page = pmd_page(pmd);
1158
	BUG_ON(is_huge_zero_page(page));
1159
	page_nid = page_to_nid(page);
1160
	last_cpupid = page_cpupid_last(page);
1161
	count_vm_numa_event(NUMA_HINT_FAULTS);
1162
	if (page_nid == this_nid) {
1163
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1164 1165
		flags |= TNF_FAULT_LOCAL;
	}
1166

1167 1168
	/* See similar comment in do_numa_page for explanation */
	if (!(vma->vm_flags & VM_WRITE))
1169 1170
		flags |= TNF_NO_GROUP;

1171 1172 1173 1174
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1175 1176 1177 1178
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1179
		if (page_locked)
1180
			goto clear_pmdnuma;
1181
	}
1182

1183
	/* Migration could have started since the pmd_trans_migrating check */
1184
	if (!page_locked) {
K
Kirill A. Shutemov 已提交
1185
		spin_unlock(fe->ptl);
1186
		wait_on_page_locked(page);
1187
		page_nid = -1;
1188 1189 1190
		goto out;
	}

1191 1192 1193 1194
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1195
	get_page(page);
K
Kirill A. Shutemov 已提交
1196
	spin_unlock(fe->ptl);
1197
	anon_vma = page_lock_anon_vma_read(page);
1198

P
Peter Zijlstra 已提交
1199
	/* Confirm the PMD did not change while page_table_lock was released */
K
Kirill A. Shutemov 已提交
1200 1201
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1202 1203
		unlock_page(page);
		put_page(page);
1204
		page_nid = -1;
1205
		goto out_unlock;
1206
	}
1207

1208 1209 1210 1211 1212 1213 1214
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1215 1216
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1217
	 * and access rights restored.
1218
	 */
K
Kirill A. Shutemov 已提交
1219 1220 1221
	spin_unlock(fe->ptl);
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
				fe->pmd, pmd, fe->address, page, target_nid);
1222 1223
	if (migrated) {
		flags |= TNF_MIGRATED;
1224
		page_nid = target_nid;
1225 1226
	} else
		flags |= TNF_MIGRATE_FAIL;
1227

1228
	goto out;
1229
clear_pmdnuma:
1230
	BUG_ON(!PageLocked(page));
1231
	was_writable = pmd_write(pmd);
1232
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1233
	pmd = pmd_mkyoung(pmd);
1234 1235
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
K
Kirill A. Shutemov 已提交
1236 1237
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1238
	unlock_page(page);
1239
out_unlock:
K
Kirill A. Shutemov 已提交
1240
	spin_unlock(fe->ptl);
1241 1242 1243 1244 1245

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1246
	if (page_nid != -1)
K
Kirill A. Shutemov 已提交
1247
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1248

1249 1250 1251
	return 0;
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long addr, unsigned long next)

{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
	int ret = 0;

1262 1263
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1264
		goto out_unlocked;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	orig_pmd = *pmd;
	if (is_huge_zero_pmd(orig_pmd)) {
		ret = 1;
		goto out;
	}

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1290
		split_huge_page(page);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
	ret = 1;
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1319
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1320
		 pmd_t *pmd, unsigned long addr)
1321
{
1322
	pmd_t orig_pmd;
1323
	spinlock_t *ptl;
1324

1325 1326
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1340
			tlb_remove_page(tlb, pmd_page(orig_pmd));
1341 1342 1343 1344
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1345
		tlb_remove_page(tlb, pmd_page(orig_pmd));
1346 1347
	} else {
		struct page *page = pmd_page(orig_pmd);
1348
		page_remove_rmap(page, true);
1349 1350
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1351 1352 1353 1354 1355 1356 1357 1358 1359
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1360
		spin_unlock(ptl);
1361
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1362
	}
1363
	return 1;
1364 1365
}

1366
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1367 1368 1369
		  unsigned long new_addr, unsigned long old_end,
		  pmd_t *old_pmd, pmd_t *new_pmd)
{
1370
	spinlock_t *old_ptl, *new_ptl;
1371 1372 1373 1374 1375
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1376
	    old_end - old_addr < HPAGE_PMD_SIZE)
1377
		return false;
1378 1379 1380 1381 1382 1383 1384

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1385
		return false;
1386 1387
	}

1388 1389 1390 1391
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1392 1393
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1394 1395 1396
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1397
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1398
		VM_BUG_ON(!pmd_none(*new_pmd));
1399

1400 1401
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
				vma_is_anonymous(vma)) {
1402
			pgtable_t pgtable;
1403 1404 1405
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1406 1407 1408
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1409
		spin_unlock(old_ptl);
1410
		return true;
1411
	}
1412
	return false;
1413 1414
}

1415 1416 1417 1418 1419 1420
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1421
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1422
		unsigned long addr, pgprot_t newprot, int prot_numa)
1423 1424
{
	struct mm_struct *mm = vma->vm_mm;
1425
	spinlock_t *ptl;
1426 1427
	int ret = 0;

1428 1429
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1430
		pmd_t entry;
1431
		bool preserve_write = prot_numa && pmd_write(*pmd);
1432
		ret = 1;
1433 1434 1435 1436 1437 1438 1439 1440

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1441
			return ret;
1442 1443
		}

1444
		if (!prot_numa || !pmd_protnone(*pmd)) {
1445
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1446
			entry = pmd_modify(entry, newprot);
1447 1448
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1449 1450
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1451 1452
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1453
		}
1454
		spin_unlock(ptl);
1455 1456 1457 1458 1459 1460
	}

	return ret;
}

/*
1461
 * Returns true if a given pmd maps a thp, false otherwise.
1462
 *
1463 1464
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
1465
 */
1466
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1467
{
1468 1469
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1470
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1471 1472 1473
		return ptl;
	spin_unlock(ptl);
	return NULL;
1474 1475
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
	put_huge_zero_page();
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1505
		unsigned long haddr, bool freeze)
1506 1507 1508 1509 1510
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1511
	bool young, write, dirty;
1512
	unsigned long addr;
1513 1514 1515 1516 1517
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1518
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1519 1520 1521

	count_vm_event(THP_SPLIT_PMD);

1522 1523
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1524 1525
		if (is_huge_zero_pmd(_pmd))
			put_huge_zero_page();
1526 1527 1528 1529 1530 1531 1532 1533
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1534 1535 1536 1537 1538 1539 1540
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1541
	page_ref_add(page, HPAGE_PMD_NR - 1);
1542 1543
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1544
	dirty = pmd_dirty(*pmd);
1545

1546
	pmdp_huge_split_prepare(vma, haddr, pmd);
1547 1548 1549
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1550
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1551 1552 1553 1554 1555 1556
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1557 1558 1559 1560 1561 1562
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
		} else {
			entry = mk_pte(page + i, vma->vm_page_prot);
1563
			entry = maybe_mkwrite(entry, vma);
1564 1565 1566 1567 1568
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
		}
1569 1570
		if (dirty)
			SetPageDirty(page + i);
1571
		pte = pte_offset_map(&_pmd, addr);
1572
		BUG_ON(!pte_none(*pte));
1573
		set_pte_at(mm, addr, pte, entry);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1589
		__dec_zone_page_state(page, NR_ANON_THPS);
1590 1591 1592 1593 1594 1595 1596 1597
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1620
	pmd_populate(mm, pmd, pgtable);
1621 1622

	if (freeze) {
1623
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1624 1625 1626 1627
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1628 1629 1630
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1631
		unsigned long address, bool freeze, struct page *page)
1632 1633 1634 1635 1636 1637 1638
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1639 1640 1641 1642 1643 1644 1645 1646 1647

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1648
	if (pmd_trans_huge(*pmd)) {
1649
		page = pmd_page(*pmd);
1650
		if (PageMlocked(page))
1651
			clear_page_mlock(page);
1652
	} else if (!pmd_devmap(*pmd))
1653
		goto out;
1654
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1655
out:
1656 1657 1658 1659
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1660 1661
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1662
{
1663 1664
	pgd_t *pgd;
	pud_t *pud;
1665 1666
	pmd_t *pmd;

1667
	pgd = pgd_offset(vma->vm_mm, address);
1668 1669 1670 1671 1672 1673 1674 1675
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1676

1677
	__split_huge_pmd(vma, pmd, address, freeze, page);
1678 1679
}

1680
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1693
		split_huge_pmd_address(vma, start, false, NULL);
1694 1695 1696 1697 1698 1699 1700 1701 1702

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1703
		split_huge_pmd_address(vma, end, false, NULL);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1717
			split_huge_pmd_address(next, nstart, false, NULL);
1718 1719
	}
}
1720

1721
static void freeze_page(struct page *page)
1722
{
1723 1724
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1725
	int i, ret;
1726 1727 1728

	VM_BUG_ON_PAGE(!PageHead(page), page);

1729 1730 1731
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1732 1733 1734 1735 1736 1737
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1738

1739
		ret = try_to_unmap(page + i, ttu_flags);
1740
	}
1741
	VM_BUG_ON_PAGE(ret, page + i - 1);
1742 1743
}

1744
static void unfreeze_page(struct page *page)
1745
{
1746
	int i;
1747

1748 1749
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1750 1751
}

1752
static void __split_huge_page_tail(struct page *head, int tail,
1753 1754 1755 1756
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1757
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1758
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1759 1760

	/*
1761
	 * tail_page->_refcount is zero and not changing from under us. But
1762
	 * get_page_unless_zero() may be running from under us on the
1763 1764
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1765 1766 1767 1768
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1769
	 * it's safer to use atomic_inc()/atomic_add().
1770
	 */
1771 1772 1773 1774 1775 1776
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1777 1778 1779 1780 1781 1782 1783 1784 1785

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1786 1787
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1803
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1804 1805 1806 1807 1808 1809 1810 1811
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1812 1813
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1814 1815 1816 1817
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1818
	pgoff_t end = -1;
1819
	int i;
1820 1821 1822 1823 1824 1825

	lruvec = mem_cgroup_page_lruvec(head, zone);

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1826 1827 1828 1829
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1830
		__split_huge_page_tail(head, i, lruvec, list);
1831 1832 1833 1834
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1835 1836
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1837 1838 1839
			put_page(head + i);
		}
	}
1840 1841

	ClearPageCompound(head);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

	spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
1852

1853
	unfreeze_page(head);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1872 1873
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1874
	int i, compound, ret;
1875 1876 1877 1878 1879 1880

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1881
	compound = compound_mapcount(page);
1882
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
1883 1884
		return compound;
	ret = compound;
1885 1886
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
1887 1888 1889
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
1890 1891 1892 1893 1894
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
1975
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
1976 1977 1978
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
1979
	bool mlocked;
1980
	unsigned long flags;
1981 1982 1983 1984 1985 1986

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2017 2018 2019 2020 2021 2022
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2023
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2024 2025 2026 2027
		ret = -EBUSY;
		goto out_unlock;
	}

2028
	mlocked = PageMlocked(page);
2029
	freeze_page(head);
2030 2031
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2032 2033 2034 2035
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	/* prevent PageLRU to go away from under us, and freeze lru stats */
	spin_lock_irqsave(&page_zone(head)->lru_lock, flags);

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2054
	/* Prevent deferred_split_scan() touching ->_refcount */
2055
	spin_lock(&pgdata->split_queue_lock);
2056 2057
	count = page_count(head);
	mapcount = total_mapcount(head);
2058
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2059
		if (!list_empty(page_deferred_list(head))) {
2060
			pgdata->split_queue_len--;
2061 2062
			list_del(page_deferred_list(head));
		}
2063 2064
		if (mapping)
			__dec_zone_page_state(page, NR_SHMEM_THPS);
2065 2066
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2067 2068
		ret = 0;
	} else {
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
		spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
2081
		unfreeze_page(head);
2082 2083 2084 2085
		ret = -EBUSY;
	}

out_unlock:
2086 2087 2088 2089 2090 2091
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2092 2093 2094 2095
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2096 2097 2098

void free_transhuge_page(struct page *page)
{
2099
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2100 2101
	unsigned long flags;

2102
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2103
	if (!list_empty(page_deferred_list(page))) {
2104
		pgdata->split_queue_len--;
2105 2106
		list_del(page_deferred_list(page));
	}
2107
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2108 2109 2110 2111 2112
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2113
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2114 2115 2116 2117
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2118
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2119
	if (list_empty(page_deferred_list(page))) {
2120
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2121 2122
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2123
	}
2124
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2125 2126 2127 2128 2129
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2130
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2131
	return ACCESS_ONCE(pgdata->split_queue_len);
2132 2133 2134 2135 2136
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2137
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2138 2139 2140 2141 2142
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2143
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2144
	/* Take pin on all head pages to avoid freeing them under us */
2145
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2146 2147
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2148 2149 2150 2151
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2152
			list_del_init(page_deferred_list(page));
2153
			pgdata->split_queue_len--;
2154
		}
2155 2156
		if (!--sc->nr_to_scan)
			break;
2157
	}
2158
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2170 2171 2172
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2173

2174 2175 2176 2177 2178 2179 2180
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2181 2182 2183 2184 2185 2186
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2187
	.flags = SHRINKER_NUMA_AWARE,
2188
};
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2214
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2227
	pr_info("%lu of %lu THP split\n", split, total);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2238
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2239 2240 2241 2242 2243 2244 2245
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif