inode.c 173.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42

43
#include "ext4_jbd2.h"
44 45
#include "xattr.h"
#include "acl.h"
46
#include "ext4_extents.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55 56 57 58
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
59 60
}

61 62
static void ext4_invalidatepage(struct page *page, unsigned long offset);

63 64 65
/*
 * Test whether an inode is a fast symlink.
 */
66
static int ext4_inode_is_fast_symlink(struct inode *inode)
67
{
68
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 70 71 72 73 74 75 76 77 78 79
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
80
	ext4_lblk_t needed;
81 82 83 84 85 86

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
87
	 * like a regular file for ext4 to try to delete it.  Things
88 89 90 91 92 93 94
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
95 96
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
97

98
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

115
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 117 118
	if (!IS_ERR(result))
		return result;

119
	ext4_std_error(inode->i_sb, PTR_ERR(result));
120 121 122 123 124 125 126 127 128 129 130
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
131 132 133
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134
		return 0;
135
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 137 138 139 140 141 142 143 144
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
145
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146
				 int nblocks)
147
{
148 149 150 151 152 153 154 155
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
156
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
157
	jbd_debug(2, "restarting handle %p\n", handle);
158 159 160
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
161
	ext4_discard_preallocations(inode);
162 163

	return ret;
164 165 166 167 168
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
169
void ext4_delete_inode(struct inode *inode)
170 171
{
	handle_t *handle;
172
	int err;
173

174 175
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
176 177 178 179 180
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

181
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
182
	if (IS_ERR(handle)) {
183
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 185 186 187 188
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
189
		ext4_orphan_del(NULL, inode);
190 191 192 193
		goto no_delete;
	}

	if (IS_SYNC(inode))
194
		ext4_handle_sync(handle);
195
	inode->i_size = 0;
196 197
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
198
		ext4_warning(inode->i_sb,
199 200 201
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
202
	if (inode->i_blocks)
203
		ext4_truncate(inode);
204 205 206 207 208 209 210

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
211
	if (!ext4_handle_has_enough_credits(handle, 3)) {
212 213 214 215
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
216
			ext4_warning(inode->i_sb,
217 218 219 220 221 222 223
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

224
	/*
225
	 * Kill off the orphan record which ext4_truncate created.
226
	 * AKPM: I think this can be inside the above `if'.
227
	 * Note that ext4_orphan_del() has to be able to cope with the
228
	 * deletion of a non-existent orphan - this is because we don't
229
	 * know if ext4_truncate() actually created an orphan record.
230 231
	 * (Well, we could do this if we need to, but heck - it works)
	 */
232 233
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
234 235 236 237 238 239 240 241

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
242
	if (ext4_mark_inode_dirty(handle, inode))
243 244 245
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
246 247
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
266
 *	ext4_block_to_path - parse the block number into array of offsets
267 268 269
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
270 271
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
272
 *
273
 *	To store the locations of file's data ext4 uses a data structure common
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

296
static int ext4_block_to_path(struct inode *inode,
297 298
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
299
{
300 301 302
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
303 304 305 306 307
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

308
	if (i_block < direct_blocks) {
309 310
		offsets[n++] = i_block;
		final = direct_blocks;
311
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
312
		offsets[n++] = EXT4_IND_BLOCK;
313 314 315
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
316
		offsets[n++] = EXT4_DIND_BLOCK;
317 318 319 320
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
321
		offsets[n++] = EXT4_TIND_BLOCK;
322 323 324 325 326
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
327
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
328 329
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
330 331 332 333 334 335
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

336
static int __ext4_check_blockref(const char *function, struct inode *inode,
337 338
				 __le32 *p, unsigned int max)
{
339
	__le32 *bref = p;
340 341
	unsigned int blk;

342
	while (bref < p+max) {
343
		blk = le32_to_cpu(*bref++);
344 345
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346
						    blk, 1))) {
347
			__ext4_error(inode->i_sb, function,
348 349
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
350 351 352 353
			return -EIO;
		}
	}
	return 0;
354 355 356 357
}


#define ext4_check_indirect_blockref(inode, bh)                         \
358
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 360 361
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
362
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 364
			      EXT4_NDIR_BLOCKS)

365
/**
366
 *	ext4_get_branch - read the chain of indirect blocks leading to data
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
391 392
 *
 *      Need to be called with
393
 *      down_read(&EXT4_I(inode)->i_data_sem)
394
 */
A
Aneesh Kumar K.V 已提交
395 396
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
397 398 399 400 401 402 403 404
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
405
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 407 408
	if (!p->key)
		goto no_block;
	while (--depth) {
409 410
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
411
			goto failure;
412

413 414 415 416 417 418 419 420 421 422 423
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
424

425
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 427 428 429 430 431 432 433 434 435 436 437 438
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
439
 *	ext4_find_near - find a place for allocation with sufficient locality
440 441 442
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
443
 *	This function returns the preferred place for block allocation.
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
458
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459
{
460
	struct ext4_inode_info *ei = EXT4_I(inode);
461
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462
	__le32 *p;
463
	ext4_fsblk_t bg_start;
464
	ext4_fsblk_t last_block;
465
	ext4_grpblk_t colour;
466 467
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
483 484 485 486 487 488 489
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 491
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

492 493 494 495 496 497 498
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

499 500
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
501
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 503
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 505 506 507
	return bg_start + colour;
}

/**
508
 *	ext4_find_goal - find a preferred place for allocation.
509 510 511 512
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
513
 *	Normally this function find the preferred place for block allocation,
514
 *	returns it.
515 516
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
517
 */
A
Aneesh Kumar K.V 已提交
518
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519
				   Indirect *partial)
520
{
521 522
	ext4_fsblk_t goal;

523
	/*
524
	 * XXX need to get goal block from mballoc's data structures
525 526
	 */

527 528 529
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
530 531 532
}

/**
533
 *	ext4_blks_to_allocate: Look up the block map and count the number
534 535 536 537 538 539 540 541 542 543
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
544
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545
				 int blocks_to_boundary)
546
{
547
	unsigned int count = 0;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
571
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 573 574 575 576 577 578 579
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
580
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 582 583
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
584
{
585
	struct ext4_allocation_request ar;
586
	int target, i;
587
	unsigned long count = 0, blk_allocated = 0;
588
	int index = 0;
589
	ext4_fsblk_t current_block = 0;
590 591 592 593 594 595 596 597 598 599
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
600 601 602
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
603 604
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
605 606
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
607 608 609
		if (*err)
			goto failed_out;

610 611
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

612 613 614 615 616 617
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
618 619 620 621 622 623 624 625 626
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
627
			break;
628
		}
629 630
	}

631 632 633 634 635
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
636 637 638 639 640 641 642 643 644 645
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
646
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647

648 649 650 651 652 653 654 655 656
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
657 658 659 660
			/*
			 * save the new block number
			 * for the first direct block
			 */
661 662
			new_blocks[index] = current_block;
		}
663
		blk_allocated += ar.len;
664 665
	}
allocated:
666
	/* total number of blocks allocated for direct blocks */
667
	ret = blk_allocated;
668 669 670
	*err = 0;
	return ret;
failed_out:
671
	for (i = 0; i < index; i++)
672
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 674 675 676
	return ret;
}

/**
677
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
678 679 680 681 682 683 684 685 686 687
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
688
 *	the same format as ext4_get_branch() would do. We are calling it after
689 690
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
691
 *	picture as after the successful ext4_get_block(), except that in one
692 693 694 695 696 697
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
698
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 700
 *	as described above and return 0.
 */
701
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 703 704
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
705 706 707 708 709 710
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
711 712
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
713

714
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
733
		err = ext4_journal_get_create_access(handle, bh);
734
		if (err) {
735 736
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
737 738 739 740 741 742 743 744
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
745
		if (n == indirect_blks) {
746 747 748 749 750 751
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
752
			for (i = 1; i < num; i++)
753 754 755 756 757 758
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

759 760
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
761 762 763 764 765 766 767
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
768
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769
	for (i = 1; i <= n ; i++) {
770
		/* 
771 772 773
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
774
		 */
775 776
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
777
	}
778 779
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780

781
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782 783 784 785 786

	return err;
}

/**
787
 * ext4_splice_branch - splice the allocated branch onto inode.
788 789 790
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
791
 *	ext4_alloc_branch)
792 793 794 795 796 797 798 799
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
800
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 802
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
803 804 805
{
	int i;
	int err = 0;
806
	ext4_fsblk_t current_block;
807 808 809 810 811 812 813 814

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
815
		err = ext4_journal_get_write_access(handle, where->bh);
816 817 818 819 820 821 822 823 824 825 826 827 828 829
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
830
			*(where->p + i) = cpu_to_le32(current_block++);
831 832 833 834 835 836 837 838 839 840 841
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
842
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 844
		 */
		jbd_debug(5, "splicing indirect only\n");
845 846
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 848 849 850 851 852
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
853
		ext4_mark_inode_dirty(handle, inode);
854 855 856 857 858 859
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
860
		/* 
861 862 863
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
864
		 */
865 866
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
867
	}
868 869
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
870 871 872 873 874

	return err;
}

/*
875 876 877 878
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
895
 *
896 897 898 899 900
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
901
 */
902
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 904 905
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
906 907
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
908
	ext4_lblk_t offsets[4];
909 910
	Indirect chain[4];
	Indirect *partial;
911
	ext4_fsblk_t goal;
912 913 914 915
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
916
	ext4_fsblk_t first_block = 0;
917

A
Alex Tomas 已提交
918
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
920
	depth = ext4_block_to_path(inode, iblock, offsets,
921
				   &blocks_to_boundary);
922 923 924 925

	if (depth == 0)
		goto out;

926
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 928 929 930 931 932 933 934

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
935
			ext4_fsblk_t blk;
936 937 938 939 940 941 942 943

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
944
		goto got_it;
945 946 947
	}

	/* Next simple case - plain lookup or failed read of indirect block */
948
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 950 951
		goto cleanup;

	/*
952
	 * Okay, we need to do block allocation.
953
	*/
954
	goal = ext4_find_goal(inode, iblock, partial);
955 956 957 958 959 960 961 962

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
963
	count = ext4_blks_to_allocate(partial, indirect_blks,
964 965
					maxblocks, blocks_to_boundary);
	/*
966
	 * Block out ext4_truncate while we alter the tree
967
	 */
968
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 970
				&count, goal,
				offsets + (partial - chain), partial);
971 972

	/*
973
	 * The ext4_splice_branch call will free and forget any buffers
974 975 976 977 978 979
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
980
		err = ext4_splice_branch(handle, inode, iblock,
981
					 partial, indirect_blks, count);
982
	if (err)
983 984 985
		goto cleanup;

	set_buffer_new(bh_result);
986 987

	ext4_update_inode_fsync_trans(handle, inode, 1);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1006 1007
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1008
{
1009
	return &EXT4_I(inode)->i_reserved_quota;
1010
}
1011
#endif
1012

1013 1014
/*
 * Calculate the number of metadata blocks need to reserve
1015
 * to allocate a new block at @lblocks for non extent file based file
1016
 */
1017 1018
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1019
{
1020 1021 1022
	struct ext4_inode_info *ei = EXT4_I(inode);
	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
	int blk_bits;
1023

1024 1025
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1026

1027
	lblock -= EXT4_NDIR_BLOCKS;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
	blk_bits = roundup_pow_of_two(lblock + 1);
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 1039 1040 1041
}

/*
 * Calculate the number of metadata blocks need to reserve
1042
 * to allocate a block located at @lblock
1043
 */
1044
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 1046
{
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047
		return ext4_ext_calc_metadata_amount(inode, lblock);
1048

1049
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 1051
}

1052 1053 1054 1055
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1056 1057
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1058 1059
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1060
	struct ext4_inode_info *ei = EXT4_I(inode);
1061
	int mdb_free = 0, allocated_meta_blocks = 0;
1062 1063

	spin_lock(&ei->i_block_reservation_lock);
1064
	trace_ext4_da_update_reserve_space(inode, used);
1065 1066 1067 1068 1069 1070 1071 1072
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1073

1074 1075 1076 1077
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	used += ei->i_allocated_meta_blocks;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1078
	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1079 1080
	ei->i_allocated_meta_blocks = 0;
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1081

1082 1083 1084 1085 1086 1087
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1088 1089
		mdb_free = ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1090
		ei->i_da_metadata_calc_len = 0;
1091 1092
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
	}
1093
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1094

1095
	/* Update quota subsystem */
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (quota_claim) {
		vfs_dq_claim_block(inode, used);
		if (mdb_free)
			vfs_dq_release_reservation_block(inode, mdb_free);
	} else {
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
		 * not update the quota for allocated blocks. But then
		 * converting an fallocate region to initialized region would
		 * have caused a metadata allocation. So claim quota for
		 * that
		 */
		if (allocated_meta_blocks)
			vfs_dq_claim_block(inode, allocated_meta_blocks);
		vfs_dq_release_reservation_block(inode, mdb_free + used);
	}
1113 1114 1115 1116 1117 1118

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1119 1120
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1121
		ext4_discard_preallocations(inode);
1122 1123
}

1124 1125
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1126 1127
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1128
		__ext4_error(inode->i_sb, msg,
1129 1130 1131 1132 1133 1134 1135 1136 1137
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1138
/*
1139 1140
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1174 1175 1176 1177 1178 1179 1180 1181 1182
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1196
/*
1197
 * The ext4_get_blocks() function tries to look up the requested blocks,
1198
 * and returns if the blocks are already mapped.
1199 1200 1201 1202 1203 1204
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1205
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1218 1219
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1220
		    int flags)
1221 1222
{
	int retval;
1223 1224

	clear_buffer_mapped(bh);
1225
	clear_buffer_unwritten(bh);
1226

1227 1228 1229
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1230
	/*
1231 1232
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1233 1234 1235 1236
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1237
				bh, 0);
1238
	} else {
1239
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1240
					     bh, 0);
1241
	}
1242
	up_read((&EXT4_I(inode)->i_data_sem));
1243

1244
	if (retval > 0 && buffer_mapped(bh)) {
1245 1246
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1247 1248 1249 1250
		if (ret != 0)
			return ret;
	}

1251
	/* If it is only a block(s) look up */
1252
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1263 1264
		return retval;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1277
	/*
1278 1279 1280 1281
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1282 1283
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1284 1285 1286 1287 1288 1289 1290

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1291
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1292
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1293 1294 1295 1296
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1297 1298
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1299
					      bh, flags);
1300
	} else {
1301
		retval = ext4_ind_get_blocks(handle, inode, block,
1302
					     max_blocks, bh, flags);
1303 1304 1305 1306 1307 1308 1309

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1310
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1311
		}
1312

1313 1314 1315 1316 1317 1318 1319
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1320
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1321 1322
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1323
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1325

1326
	up_write((&EXT4_I(inode)->i_data_sem));
1327
	if (retval > 0 && buffer_mapped(bh)) {
1328 1329 1330
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1331 1332 1333
		if (ret != 0)
			return ret;
	}
1334 1335 1336
	return retval;
}

1337 1338 1339
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1340 1341
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1342
{
1343
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1344
	int ret = 0, started = 0;
1345
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1346
	int dio_credits;
1347

J
Jan Kara 已提交
1348 1349 1350 1351
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1352 1353
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1354
		if (IS_ERR(handle)) {
1355
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1356
			goto out;
1357
		}
J
Jan Kara 已提交
1358
		started = 1;
1359 1360
	}

1361
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1362
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1363 1364 1365
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1366
	}
J
Jan Kara 已提交
1367 1368 1369
	if (started)
		ext4_journal_stop(handle);
out:
1370 1371 1372 1373 1374 1375
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1376
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1377
				ext4_lblk_t block, int create, int *errp)
1378 1379 1380
{
	struct buffer_head dummy;
	int fatal = 0, err;
1381
	int flags = 0;
1382 1383 1384 1385 1386 1387

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1388 1389 1390
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1391
	/*
1392 1393
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1410
			J_ASSERT(handle != NULL);
1411 1412 1413 1414 1415

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1416
			 * writes use ext4_get_block instead, so it's not a
1417 1418 1419 1420
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1421
			fatal = ext4_journal_get_create_access(handle, bh);
1422
			if (!fatal && !buffer_uptodate(bh)) {
1423
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1424 1425 1426
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1427 1428
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1445
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1446
			       ext4_lblk_t block, int create, int *err)
1447
{
1448
	struct buffer_head *bh;
1449

1450
	bh = ext4_getblk(handle, inode, block, create, err);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1464 1465 1466 1467 1468 1469 1470
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1471 1472 1473 1474 1475 1476 1477
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1478 1479
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1480
	     block_start = block_end, bh = next) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1498
 * close off a transaction and start a new one between the ext4_get_block()
1499
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1500 1501
 * prepare_write() is the right place.
 *
1502 1503
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1504 1505 1506 1507
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1508
 * By accident, ext4 can be reentered when a transaction is open via
1509 1510 1511 1512 1513 1514
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1515
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1516 1517 1518 1519 1520
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1521
				       struct buffer_head *bh)
1522 1523 1524
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1525
	return ext4_journal_get_write_access(handle, bh);
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1538 1539
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1540
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1541 1542
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1543
{
1544
	struct inode *inode = mapping->host;
1545
	int ret, needed_blocks;
1546 1547
	handle_t *handle;
	int retries = 0;
1548
	struct page *page;
1549
	pgoff_t index;
1550
	unsigned from, to;
N
Nick Piggin 已提交
1551

1552
	trace_ext4_write_begin(inode, pos, len, flags);
1553 1554 1555 1556 1557
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1558
	index = pos >> PAGE_CACHE_SHIFT;
1559 1560
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1561 1562

retry:
1563 1564 1565 1566
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1567
	}
1568

1569 1570 1571 1572
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1573
	page = grab_cache_page_write_begin(mapping, index, flags);
1574 1575 1576 1577 1578 1579 1580
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1581 1582 1583 1584 1585 1586
	if (ext4_should_dioread_nolock(inode))
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block_write);
	else
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block);
N
Nick Piggin 已提交
1587 1588

	if (!ret && ext4_should_journal_data(inode)) {
1589 1590 1591
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1592 1593

	if (ret) {
1594 1595
		unlock_page(page);
		page_cache_release(page);
1596 1597 1598 1599
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1600 1601 1602
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1603
		 */
1604
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1605 1606 1607 1608
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1609
			ext4_truncate_failed_write(inode);
1610
			/*
1611
			 * If truncate failed early the inode might
1612 1613 1614 1615 1616 1617 1618
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1619 1620
	}

1621
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1622
		goto retry;
1623
out:
1624 1625 1626
	return ret;
}

N
Nick Piggin 已提交
1627 1628
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1629 1630 1631 1632
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1633
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1634 1635
}

1636
static int ext4_generic_write_end(struct file *file,
1637 1638 1639
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1682 1683 1684 1685
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1686
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1687 1688
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1689
static int ext4_ordered_write_end(struct file *file,
1690 1691 1692
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1693
{
1694
	handle_t *handle = ext4_journal_current_handle();
1695
	struct inode *inode = mapping->host;
1696 1697
	int ret = 0, ret2;

1698
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1699
	ret = ext4_jbd2_file_inode(handle, inode);
1700 1701

	if (ret == 0) {
1702
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1703
							page, fsdata);
1704
		copied = ret2;
1705
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1706 1707 1708 1709 1710
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1711 1712
		if (ret2 < 0)
			ret = ret2;
1713
	}
1714
	ret2 = ext4_journal_stop(handle);
1715 1716
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1717

1718
	if (pos + len > inode->i_size) {
1719
		ext4_truncate_failed_write(inode);
1720
		/*
1721
		 * If truncate failed early the inode might still be
1722 1723 1724 1725 1726 1727 1728 1729
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1730
	return ret ? ret : copied;
1731 1732
}

N
Nick Piggin 已提交
1733
static int ext4_writeback_write_end(struct file *file,
1734 1735 1736
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1737
{
1738
	handle_t *handle = ext4_journal_current_handle();
1739
	struct inode *inode = mapping->host;
1740 1741
	int ret = 0, ret2;

1742
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1743
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1744
							page, fsdata);
1745
	copied = ret2;
1746
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 1748 1749 1750 1751 1752
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1753 1754
	if (ret2 < 0)
		ret = ret2;
1755

1756
	ret2 = ext4_journal_stop(handle);
1757 1758
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1759

1760
	if (pos + len > inode->i_size) {
1761
		ext4_truncate_failed_write(inode);
1762
		/*
1763
		 * If truncate failed early the inode might still be
1764 1765 1766 1767 1768 1769 1770
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1771
	return ret ? ret : copied;
1772 1773
}

N
Nick Piggin 已提交
1774
static int ext4_journalled_write_end(struct file *file,
1775 1776 1777
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1778
{
1779
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1780
	struct inode *inode = mapping->host;
1781 1782
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1783
	unsigned from, to;
1784
	loff_t new_i_size;
1785

1786
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1787 1788 1789 1790 1791 1792 1793 1794
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1795 1796

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1797
				to, &partial, write_end_fn);
1798 1799
	if (!partial)
		SetPageUptodate(page);
1800 1801
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1802
		i_size_write(inode, pos+copied);
1803
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1804 1805
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1806
		ret2 = ext4_mark_inode_dirty(handle, inode);
1807 1808 1809
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1810

1811
	unlock_page(page);
1812
	page_cache_release(page);
1813
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1814 1815 1816 1817 1818 1819
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1820
	ret2 = ext4_journal_stop(handle);
1821 1822
	if (!ret)
		ret = ret2;
1823
	if (pos + len > inode->i_size) {
1824
		ext4_truncate_failed_write(inode);
1825
		/*
1826
		 * If truncate failed early the inode might still be
1827 1828 1829 1830 1831 1832
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1833 1834

	return ret ? ret : copied;
1835
}
1836

1837 1838 1839 1840
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1841
{
A
Aneesh Kumar K.V 已提交
1842
	int retries = 0;
1843
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844
	struct ext4_inode_info *ei = EXT4_I(inode);
1845
	unsigned long md_needed, md_reserved;
1846 1847 1848 1849 1850 1851

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1852
repeat:
1853 1854
	spin_lock(&ei->i_block_reservation_lock);
	md_reserved = ei->i_reserved_meta_blocks;
1855
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1856
	trace_ext4_da_reserve_space(inode, md_needed);
1857
	spin_unlock(&ei->i_block_reservation_lock);
1858

1859 1860 1861 1862 1863
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
1864
	if (vfs_dq_reserve_block(inode, md_needed + 1))
1865 1866
		return -EDQUOT;

1867 1868
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
		vfs_dq_release_reservation_block(inode, md_needed + 1);
A
Aneesh Kumar K.V 已提交
1869 1870 1871 1872
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1873 1874
		return -ENOSPC;
	}
1875
	spin_lock(&ei->i_block_reservation_lock);
1876
	ei->i_reserved_data_blocks++;
1877 1878
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1879

1880 1881 1882
	return 0;       /* success */
}

1883
static void ext4_da_release_space(struct inode *inode, int to_free)
1884 1885
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1886
	struct ext4_inode_info *ei = EXT4_I(inode);
1887

1888 1889 1890
	if (!to_free)
		return;		/* Nothing to release, exit */

1891
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1892

1893
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1894
		/*
1895 1896 1897 1898
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1899
		 */
1900 1901 1902 1903 1904 1905
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1906
	}
1907
	ei->i_reserved_data_blocks -= to_free;
1908

1909 1910 1911 1912 1913 1914
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1915 1916
		to_free += ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1917
		ei->i_da_metadata_calc_len = 0;
1918
	}
1919

1920 1921
	/* update fs dirty blocks counter */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1922 1923

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1924

1925
	vfs_dq_release_reservation_block(inode, to_free);
1926 1927 1928
}

static void ext4_da_page_release_reservation(struct page *page,
1929
					     unsigned long offset)
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1946
	ext4_da_release_space(page->mapping->host, to_release);
1947
}
1948

1949 1950 1951 1952 1953 1954
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1955
 * them with writepage() call back
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1968
	long pages_skipped;
1969 1970 1971 1972 1973
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1974 1975

	BUG_ON(mpd->next_page <= mpd->first_page);
1976 1977 1978
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1979
	 * If we look at mpd->b_blocknr we would only be looking
1980 1981
	 * at the currently mapped buffer_heads.
	 */
1982 1983 1984
	index = mpd->first_page;
	end = mpd->next_page - 1;

1985
	pagevec_init(&pvec, 0);
1986
	while (index <= end) {
1987
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1988 1989 1990 1991 1992
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1993 1994 1995 1996 1997 1998 1999 2000
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2001
			pages_skipped = mpd->wbc->pages_skipped;
2002
			err = mapping->a_ops->writepage(page, mpd->wbc);
2003 2004 2005 2006 2007
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2008
				mpd->pages_written++;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2031
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2032 2033 2034 2035 2036 2037 2038 2039 2040
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2041
	pgoff_t index, end;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2099
				} else if (buffer_mapped(bh))
2100 2101
					BUG_ON(bh->b_blocknr != pblock);

2102 2103
				if (buffer_uninit(exbh))
					set_buffer_uninit(bh);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2161 2162 2163
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2176 2177 2178
	return;
}

2179 2180 2181
/*
 * mpage_da_map_blocks - go through given space
 *
2182
 * @mpd - bh describing space
2183 2184 2185 2186
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2187
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2188
{
2189
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2190
	struct buffer_head new;
2191 2192 2193 2194
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2195 2196 2197 2198

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2199
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2200 2201
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2202
		return 0;
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2213
	/*
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2230
	 */
2231
	new.b_state = 0;
2232
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2233 2234
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2235
	if (mpd->b_state & (1 << BH_Delay))
2236 2237
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2238
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2239
			       &new, get_blocks_flags);
2240 2241
	if (blks < 0) {
		err = blks;
2242 2243 2244 2245
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2246 2247 2248
		 */
		if (err == -EAGAIN)
			return 0;
2249 2250

		if (err == -ENOSPC &&
2251
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2252 2253 2254 2255
			mpd->retval = err;
			return 0;
		}

2256
		/*
2257 2258 2259 2260 2261
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2262
		 */
2263 2264 2265 2266 2267 2268 2269 2270
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2271
		if (err == -ENOSPC) {
2272
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2273
		}
2274
		/* invalidate all the pages */
2275
		ext4_da_block_invalidatepages(mpd, next,
2276
				mpd->b_size >> mpd->inode->i_blkbits);
2277 2278
		return err;
	}
2279 2280 2281
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2282

2283 2284
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2285

2286 2287 2288 2289
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2290 2291
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2292
		mpage_put_bnr_to_bhs(mpd, next, &new);
2293

2294 2295 2296 2297 2298 2299 2300
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2301
	 * Update on-disk size along with block allocation.
2302 2303 2304 2305 2306 2307 2308 2309 2310
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2311
	return 0;
2312 2313
}

2314 2315
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2327 2328
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2329 2330
{
	sector_t next;
2331
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2355 2356 2357
	/*
	 * First block in the extent
	 */
2358 2359 2360 2361
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2362 2363 2364
		return;
	}

2365
	next = mpd->b_blocknr + nrblocks;
2366 2367 2368
	/*
	 * Can we merge the block to our big extent?
	 */
2369 2370
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2371 2372 2373
		return;
	}

2374
flush_it:
2375 2376 2377 2378
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2379 2380
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2381 2382
	mpd->io_done = 1;
	return;
2383 2384
}

2385
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2386
{
2387
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2404
	struct buffer_head *bh, *head;
2405 2406
	sector_t logical;

2407 2408 2409 2410
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2411
		 * try to write them again after
2412 2413 2414 2415 2416 2417
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2418 2419 2420 2421 2422 2423
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2424
		 * and start IO on them using writepage()
2425 2426
		 */
		if (mpd->next_page != mpd->first_page) {
2427 2428
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2429 2430 2431 2432 2433 2434 2435
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2446 2447 2448
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2449 2450 2451 2452 2453 2454 2455
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2456 2457
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2458 2459
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2460 2461 2462 2463 2464 2465 2466 2467
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2468 2469 2470 2471
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2472
			 * with the page in ext4_writepage
2473
			 */
2474
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2475 2476 2477
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2478 2479
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2480 2481 2482 2483 2484 2485 2486 2487 2488
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2489 2490
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2491
			}
2492 2493 2494 2495 2496 2497 2498 2499
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2500 2501 2502
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2503 2504 2505 2506 2507 2508 2509
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2510 2511 2512 2513 2514
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2515 2516 2517 2518
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2519 2520 2521 2522 2523 2524 2525 2526 2527

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2528
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2529 2530
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2531 2532 2533 2534
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2535
		ret = ext4_da_reserve_space(inode, iblock);
2536 2537 2538 2539
		if (ret)
			/* not enough space to reserve */
			return ret;

2540
		map_bh(bh_result, inode->i_sb, invalid_block);
2541 2542 2543 2544
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2545 2546 2547 2548 2549 2550 2551 2552
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2553
			set_buffer_new(bh_result);
2554 2555
			set_buffer_mapped(bh_result);
		}
2556 2557 2558 2559 2560
		ret = 0;
	}

	return ret;
}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2579 2580 2581 2582 2583
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2584 2585
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2586 2587 2588 2589
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2590
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2591 2592 2593 2594 2595
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2645
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2646 2647 2648 2649
out:
	return ret;
}

2650 2651 2652
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2653
/*
2654 2655 2656 2657 2658 2659 2660 2661 2662
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2663 2664 2665 2666 2667
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2693
 */
2694
static int ext4_writepage(struct page *page,
2695
			  struct writeback_control *wbc)
2696 2697
{
	int ret = 0;
2698
	loff_t size;
2699
	unsigned int len;
2700
	struct buffer_head *page_bufs = NULL;
2701 2702
	struct inode *inode = page->mapping->host;

2703
	trace_ext4_writepage(inode, page);
2704 2705 2706 2707 2708
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2709

2710
	if (page_has_buffers(page)) {
2711
		page_bufs = page_buffers(page);
2712
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2713
					ext4_bh_delay_or_unwritten)) {
2714
			/*
2715 2716
			 * We don't want to do  block allocation
			 * So redirty the page and return
2717 2718 2719
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2740
		ret = block_prepare_write(page, 0, len,
2741
					  noalloc_get_block_write);
2742 2743 2744 2745
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2746
						ext4_bh_delay_or_unwritten)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2756 2757 2758 2759 2760
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2761
		/* now mark the buffer_heads as dirty and uptodate */
2762
		block_commit_write(page, 0, len);
2763 2764
	}

2765 2766 2767 2768 2769 2770
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2771
		return __ext4_journalled_writepage(page, len);
2772 2773
	}

2774
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2775
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2776 2777 2778 2779 2780
	else if (page_bufs && buffer_uninit(page_bufs)) {
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2781 2782
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2783 2784 2785 2786

	return ret;
}

2787
/*
2788 2789 2790 2791 2792
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2793
 */
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2805
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2806 2807 2808 2809 2810
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2811

2812
static int ext4_da_writepages(struct address_space *mapping,
2813
			      struct writeback_control *wbc)
2814
{
2815 2816
	pgoff_t	index;
	int range_whole = 0;
2817
	handle_t *handle = NULL;
2818
	struct mpage_da_data mpd;
2819
	struct inode *inode = mapping->host;
2820
	int no_nrwrite_index_update;
2821 2822
	int pages_written = 0;
	long pages_skipped;
2823
	unsigned int max_pages;
2824
	int range_cyclic, cycled = 1, io_done = 0;
2825 2826
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2827
	loff_t range_start = wbc->range_start;
2828
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2829

2830
	trace_ext4_da_writepages(inode, wbc);
2831

2832 2833 2834 2835 2836
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2837
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2838
		return 0;
2839 2840 2841 2842 2843

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2844
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2845 2846 2847 2848 2849
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2850
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2851 2852
		return -EROFS;

2853 2854
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2855

2856 2857
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2858
		index = mapping->writeback_index;
2859 2860 2861 2862 2863 2864
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2865
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2897 2898 2899
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2900 2901 2902 2903 2904 2905 2906 2907
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2908
retry:
2909
	while (!ret && wbc->nr_to_write > 0) {
2910 2911 2912 2913 2914 2915 2916 2917

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2918
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2919

2920 2921 2922 2923
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2924
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2925 2926
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2927 2928
			goto out_writepages;
		}
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
2950
		 * If we have a contiguous extent of pages and we
2951 2952 2953 2954 2955 2956 2957 2958 2959
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2960
		trace_ext4_da_write_pages(inode, &mpd);
2961
		wbc->nr_to_write -= mpd.pages_written;
2962

2963
		ext4_journal_stop(handle);
2964

2965
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2966 2967 2968 2969
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2970
			jbd2_journal_force_commit_nested(sbi->s_journal);
2971 2972 2973
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2974 2975 2976 2977
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2978 2979
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2980
			ret = 0;
2981
			io_done = 1;
2982
		} else if (wbc->nr_to_write)
2983 2984 2985 2986 2987 2988
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2989
	}
2990 2991 2992 2993 2994 2995 2996
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2997
	if (pages_skipped != wbc->pages_skipped)
2998 2999 3000 3001
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
3002 3003 3004

	/* Update index */
	index += pages_written;
3005
	wbc->range_cyclic = range_cyclic;
3006 3007 3008 3009 3010 3011
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3012

3013
out_writepages:
3014 3015
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
3016
	wbc->nr_to_write -= nr_to_writebump;
3017
	wbc->range_start = range_start;
3018
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3019
	return ret;
3020 3021
}

3022 3023 3024 3025 3026 3027 3028 3029 3030
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3031
	 * counters can get slightly wrong with percpu_counter_batch getting
3032 3033 3034 3035 3036 3037 3038 3039 3040
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3041 3042
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3043 3044 3045
		 */
		return 1;
	}
3046 3047 3048 3049 3050 3051 3052
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3053 3054 3055
	return 0;
}

3056
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3057 3058
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3059
{
3060
	int ret, retries = 0, quota_retries = 0;
3061 3062 3063 3064 3065 3066 3067 3068 3069
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3070 3071 3072 3073 3074 3075 3076

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3077
	trace_ext4_da_write_begin(inode, pos, len, flags);
3078
retry:
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3090 3091 3092
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3093

3094
	page = grab_cache_page_write_begin(mapping, index, flags);
3095 3096 3097 3098 3099
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3100 3101 3102
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3103
				ext4_da_get_block_prep);
3104 3105 3106 3107
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3108 3109 3110 3111 3112 3113
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3114
			ext4_truncate_failed_write(inode);
3115 3116
	}

3117 3118
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

	if ((ret == -EDQUOT) &&
	    EXT4_I(inode)->i_reserved_meta_blocks &&
	    (quota_retries++ < 3)) {
		/*
		 * Since we often over-estimate the number of meta
		 * data blocks required, we may sometimes get a
		 * spurios out of quota error even though there would
		 * be enough space once we write the data blocks and
		 * find out how many meta data blocks were _really_
		 * required.  So try forcing the inode write to see if
		 * that helps.
		 */
		write_inode_now(inode, (quota_retries == 3));
		goto retry;
	}
3135 3136 3137 3138
out:
	return ret;
}

3139 3140 3141 3142 3143
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3144
					    unsigned long offset)
3145 3146 3147 3148 3149 3150 3151 3152 3153
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3154
	for (i = 0; i < idx; i++)
3155 3156
		bh = bh->b_this_page;

3157
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3158 3159 3160 3161
		return 0;
	return 1;
}

3162
static int ext4_da_write_end(struct file *file,
3163 3164 3165
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3166 3167 3168 3169 3170
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3171
	unsigned long start, end;
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3185

3186
	trace_ext4_da_write_end(inode, pos, len, copied);
3187
	start = pos & (PAGE_CACHE_SIZE - 1);
3188
	end = start + copied - 1;
3189 3190 3191 3192 3193 3194 3195 3196

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3208

3209 3210 3211
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3212 3213 3214 3215 3216
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3217
		}
3218
	}
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3240
	ext4_da_page_release_reservation(page, offset);
3241 3242 3243 3244 3245 3246 3247

out:
	ext4_invalidatepage(page, offset);

	return;
}

3248 3249 3250 3251 3252
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3253 3254
	trace_ext4_alloc_da_blocks(inode);

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3265
	 *
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3285
	 *
3286 3287 3288 3289 3290 3291
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3292

3293 3294 3295 3296 3297
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3298
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3299 3300 3301 3302 3303 3304 3305 3306
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3307
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3308 3309 3310 3311 3312
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3323 3324
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3336
		 * NB. EXT4_STATE_JDATA is not set on files other than
3337 3338 3339 3340 3341 3342
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3343
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3344
		journal = EXT4_JOURNAL(inode);
3345 3346 3347
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3348 3349 3350 3351 3352

		if (err)
			return 0;
	}

3353
	return generic_block_bmap(mapping, block, ext4_get_block);
3354 3355
}

3356
static int ext4_readpage(struct file *file, struct page *page)
3357
{
3358
	return mpage_readpage(page, ext4_get_block);
3359 3360 3361
}

static int
3362
ext4_readpages(struct file *file, struct address_space *mapping,
3363 3364
		struct list_head *pages, unsigned nr_pages)
{
3365
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3366 3367
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3397
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3398
{
3399
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3400

3401 3402 3403 3404 3405
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3406 3407 3408 3409 3410 3411
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3412 3413 3414 3415
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3416 3417
}

3418
static int ext4_releasepage(struct page *page, gfp_t wait)
3419
{
3420
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3421 3422 3423 3424

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3425 3426 3427 3428
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3429 3430 3431
}

/*
3432 3433
 * O_DIRECT for ext3 (or indirect map) based files
 *
3434 3435 3436 3437 3438
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3439 3440
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3441
 */
3442
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3443 3444
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3445 3446 3447
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3448
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3449
	handle_t *handle;
3450 3451 3452
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3453
	int retries = 0;
3454 3455 3456 3457 3458

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3459 3460 3461 3462 3463 3464
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3465
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3466 3467 3468 3469
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3470 3471
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3472
			ext4_journal_stop(handle);
3473 3474 3475
		}
	}

3476
retry:
3477 3478
	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3479
				 ext4_get_block, NULL);
3480 3481
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3482

J
Jan Kara 已提交
3483
	if (orphan) {
3484 3485
		int err;

J
Jan Kara 已提交
3486 3487 3488 3489 3490 3491 3492
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3493 3494 3495
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3496 3497 3498
			goto out;
		}
		if (inode->i_nlink)
3499
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3500
		if (ret > 0) {
3501 3502 3503 3504 3505 3506 3507 3508
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3509
				 * ext4_mark_inode_dirty() to userspace.  So
3510 3511
				 * ignore it.
				 */
3512
				ext4_mark_inode_dirty(handle, inode);
3513 3514
			}
		}
3515
		err = ext4_journal_stop(handle);
3516 3517 3518 3519 3520 3521 3522
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3523
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3524 3525
		   struct buffer_head *bh_result, int create)
{
3526
	handle_t *handle = ext4_journal_current_handle();
3527 3528 3529
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;
3530
	int started = 0;
3531

3532
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3533
		   inode->i_ino, create);
3534
	/*
3535 3536 3537
	 * ext4_get_block in prepare for a DIO write or buffer write.
	 * We allocate an uinitialized extent if blocks haven't been allocated.
	 * The extent will be converted to initialized after IO complete.
3538
	 */
3539
	create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	if (!handle) {
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		started = 1;
3551
	}
3552

3553 3554 3555 3556 3557 3558
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
3559 3560
	if (started)
		ext4_journal_stop(handle);
3561 3562 3563 3564
out:
	return ret;
}

3565
static void dump_completed_IO(struct inode * inode)
3566 3567 3568 3569
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3570
	unsigned long flags;
3571

3572 3573
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3574 3575 3576
		return;
	}

3577
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3578
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3579
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3580 3581 3582 3583 3584 3585 3586 3587 3588
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3589
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3590 3591
#endif
}
3592 3593 3594 3595

/*
 * check a range of space and convert unwritten extents to written.
 */
3596
static int ext4_end_io_nolock(ext4_io_end_t *io)
3597 3598 3599
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3600
	ssize_t size = io->size;
3601 3602
	int ret = 0;

3603
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3604 3605 3606 3607 3608 3609
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3610
	if (io->flag != EXT4_IO_UNWRITTEN)
3611 3612
		return ret;

3613
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3614
	if (ret < 0) {
3615
		printk(KERN_EMERG "%s: failed to convert unwritten"
3616 3617 3618 3619 3620
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3621

3622 3623 3624
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3625
}
3626

3627 3628 3629
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3630
static void ext4_end_io_work(struct work_struct *work)
3631
{
3632 3633 3634 3635 3636
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3637

3638
	mutex_lock(&inode->i_mutex);
3639
	ret = ext4_end_io_nolock(io);
3640 3641 3642
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3643
	}
3644 3645 3646 3647 3648

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3649
	mutex_unlock(&inode->i_mutex);
3650
	ext4_free_io_end(io);
3651
}
3652

3653 3654 3655
/*
 * This function is called from ext4_sync_file().
 *
3656 3657
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3658 3659
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3660 3661 3662 3663 3664
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3665
 */
3666
int flush_completed_IO(struct inode *inode)
3667 3668
{
	ext4_io_end_t *io;
3669 3670
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3671 3672 3673
	int ret = 0;
	int ret2 = 0;

3674
	if (list_empty(&ei->i_completed_io_list))
3675 3676
		return ret;

3677
	dump_completed_IO(inode);
3678 3679 3680
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3681 3682
				ext4_io_end_t, list);
		/*
3683
		 * Calling ext4_end_io_nolock() to convert completed
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3696
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3697
		ret = ext4_end_io_nolock(io);
3698
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3699 3700 3701 3702 3703
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3704
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3705 3706 3707
	return (ret2 < 0) ? ret2 : 0;
}

3708
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3709 3710 3711
{
	ext4_io_end_t *io = NULL;

3712
	io = kmalloc(sizeof(*io), flags);
3713 3714

	if (io) {
3715
		igrab(inode);
3716
		io->inode = inode;
3717
		io->flag = 0;
3718 3719
		io->offset = 0;
		io->size = 0;
3720
		io->page = NULL;
3721
		INIT_WORK(&io->work, ext4_end_io_work);
3722
		INIT_LIST_HEAD(&io->list);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3733 3734
	unsigned long flags;
	struct ext4_inode_info *ei;
3735

3736 3737 3738 3739
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3740 3741 3742 3743 3744 3745
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3746
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3747 3748
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3749
		return;
3750 3751
	}

3752 3753
	io_end->offset = offset;
	io_end->size = size;
3754
	io_end->flag = EXT4_IO_UNWRITTEN;
3755 3756
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3757
	/* queue the work to convert unwritten extents to written */
3758 3759
	queue_work(wq, &io_end->work);

3760
	/* Add the io_end to per-inode completed aio dio list*/
3761 3762 3763 3764
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3765 3766
	iocb->private = NULL;
}
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3833 3834 3835 3836 3837 3838 3839 3840 3841
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3842 3843 3844 3845
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3864 3865 3866
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3867 3868
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3869 3870
		 *
 		 * As to previously fallocated extents, ext4 get_block
3871 3872 3873
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3874 3875 3876 3877 3878 3879 3880 3881
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3882
 		 */
3883 3884 3885
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3886
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3899 3900 3901
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3902
					 ext4_get_block_write,
3903
					 ext4_end_io_dio);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3923 3924
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3925
			int err;
3926 3927 3928 3929
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3930 3931 3932 3933
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3934
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3935
		}
3936 3937
		return ret;
	}
3938 3939

	/* for write the the end of file case, we fall back to old way */
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3956
/*
3957
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3969
static int ext4_journalled_set_page_dirty(struct page *page)
3970 3971 3972 3973 3974
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3975
static const struct address_space_operations ext4_ordered_aops = {
3976 3977
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3978
	.writepage		= ext4_writepage,
3979 3980 3981 3982 3983 3984 3985 3986 3987
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3988
	.error_remove_page	= generic_error_remove_page,
3989 3990
};

3991
static const struct address_space_operations ext4_writeback_aops = {
3992 3993
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3994
	.writepage		= ext4_writepage,
3995 3996 3997 3998 3999 4000 4001 4002 4003
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4004
	.error_remove_page	= generic_error_remove_page,
4005 4006
};

4007
static const struct address_space_operations ext4_journalled_aops = {
4008 4009
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4010
	.writepage		= ext4_writepage,
4011 4012 4013 4014 4015 4016 4017 4018
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4019
	.error_remove_page	= generic_error_remove_page,
4020 4021
};

4022
static const struct address_space_operations ext4_da_aops = {
4023 4024
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4025
	.writepage		= ext4_writepage,
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4036
	.error_remove_page	= generic_error_remove_page,
4037 4038
};

4039
void ext4_set_aops(struct inode *inode)
4040
{
4041 4042 4043 4044
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4045
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4046 4047 4048
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4049 4050
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4051
	else
4052
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4053 4054 4055
}

/*
4056
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4057 4058 4059 4060
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4061
int ext4_block_truncate_page(handle_t *handle,
4062 4063
		struct address_space *mapping, loff_t from)
{
4064
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4065
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4066 4067
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4068 4069
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4070
	struct page *page;
4071 4072
	int err = 0;

4073 4074
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4075 4076 4077
	if (!page)
		return -EINVAL;

4078 4079 4080 4081 4082 4083 4084 4085 4086
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4087
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4088
		zero_user(page, offset, length);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4113
		ext4_get_block(inode, iblock, bh, 0);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4134
	if (ext4_should_journal_data(inode)) {
4135
		BUFFER_TRACE(bh, "get write access");
4136
		err = ext4_journal_get_write_access(handle, bh);
4137 4138 4139 4140
		if (err)
			goto unlock;
	}

4141
	zero_user(page, offset, length);
4142 4143 4144 4145

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4146
	if (ext4_should_journal_data(inode)) {
4147
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4148
	} else {
4149
		if (ext4_should_order_data(inode))
4150
			err = ext4_jbd2_file_inode(handle, inode);
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4174
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4175 4176
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4177
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4178 4179 4180
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4181
 *	This is a helper function used by ext4_truncate().
4182 4183 4184 4185 4186 4187 4188
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4189
 *	past the truncation point is possible until ext4_truncate()
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4208
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4209 4210
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4211 4212 4213 4214 4215
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4216
	/* Make k index the deepest non-null offset + 1 */
4217 4218
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4219
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4230
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4242
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4243 4244 4245 4246 4247 4248
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4249
	while (partial > p) {
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4265 4266 4267 4268 4269
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4270 4271
{
	__le32 *p;
4272
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4273 4274 4275

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4276

4277 4278
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4279
		ext4_error(inode->i_sb, "inode #%lu: "
4280 4281 4282 4283 4284 4285
			   "attempt to clear blocks %llu len %lu, invalid",
			   inode->i_ino, (unsigned long long) block_to_free,
			   count);
		return 1;
	}

4286 4287
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4288 4289
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4290
		}
4291
		ext4_mark_inode_dirty(handle, inode);
4292 4293
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4294 4295
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4296
			ext4_journal_get_write_access(handle, bh);
4297 4298 4299
		}
	}

4300 4301
	for (p = first; p < last; p++)
		*p = 0;
4302

4303
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4304
	return 0;
4305 4306 4307
}

/**
4308
 * ext4_free_data - free a list of data blocks
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4326
static void ext4_free_data(handle_t *handle, struct inode *inode,
4327 4328 4329
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4330
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4331 4332 4333 4334
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4335
	ext4_fsblk_t nr;		    /* Current block # */
4336 4337 4338 4339 4340 4341
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4342
		err = ext4_journal_get_write_access(handle, this_bh);
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4360 4361 4362 4363
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4364 4365 4366 4367 4368 4369 4370 4371
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4372
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4373 4374 4375
				  count, block_to_free_p, p);

	if (this_bh) {
4376
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4377 4378 4379 4380 4381 4382 4383

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4384
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4385
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4386
		else
4387
			ext4_error(inode->i_sb,
4388 4389 4390 4391
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4392 4393 4394 4395
	}
}

/**
4396
 *	ext4_free_branches - free an array of branches
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4408
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4409 4410 4411
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4412
	ext4_fsblk_t nr;
4413 4414
	__le32 *p;

4415
	if (ext4_handle_is_aborted(handle))
4416 4417 4418 4419
		return;

	if (depth--) {
		struct buffer_head *bh;
4420
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4421 4422 4423 4424 4425 4426
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4427 4428
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4429
				ext4_error(inode->i_sb,
4430 4431 4432 4433 4434 4435 4436
					   "indirect mapped block in inode "
					   "#%lu invalid (level %d, blk #%lu)",
					   inode->i_ino, depth,
					   (unsigned long) nr);
				break;
			}

4437 4438 4439 4440 4441 4442 4443 4444
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4445
				ext4_error(inode->i_sb,
4446
					   "Read failure, inode=%lu, block=%llu",
4447 4448 4449 4450 4451 4452
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4453
			ext4_free_branches(handle, inode, bh,
4454 4455 4456
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4457 4458 4459 4460 4461

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4462
			 * jbd2_journal_revoke().
4463 4464 4465
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4466
			 * transaction then jbd2_journal_forget() will simply
4467
			 * brelse() it.  That means that if the underlying
4468
			 * block is reallocated in ext4_get_block(),
4469 4470 4471 4472 4473 4474 4475 4476
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4477
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4495
			if (ext4_handle_is_aborted(handle))
4496 4497
				return;
			if (try_to_extend_transaction(handle, inode)) {
4498
				ext4_mark_inode_dirty(handle, inode);
4499 4500
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4501 4502
			}

4503 4504
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4505 4506 4507 4508 4509 4510 4511

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4512
				if (!ext4_journal_get_write_access(handle,
4513 4514 4515
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4516 4517 4518 4519
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4520 4521 4522 4523 4524 4525
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4526
		ext4_free_data(handle, inode, parent_bh, first, last);
4527 4528 4529
	}
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4543
/*
4544
 * ext4_truncate()
4545
 *
4546 4547
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4564
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4565
 * that this inode's truncate did not complete and it will again call
4566 4567
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4568
 * that's fine - as long as they are linked from the inode, the post-crash
4569
 * ext4_truncate() run will find them and release them.
4570
 */
4571
void ext4_truncate(struct inode *inode)
4572 4573
{
	handle_t *handle;
4574
	struct ext4_inode_info *ei = EXT4_I(inode);
4575
	__le32 *i_data = ei->i_data;
4576
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4577
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4578
	ext4_lblk_t offsets[4];
4579 4580 4581 4582
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4583
	ext4_lblk_t last_block;
4584 4585
	unsigned blocksize = inode->i_sb->s_blocksize;

4586
	if (!ext4_can_truncate(inode))
4587 4588
		return;

4589 4590
	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;

4591
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4592
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4593

A
Aneesh Kumar K.V 已提交
4594
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4595
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4596 4597
		return;
	}
A
Alex Tomas 已提交
4598

4599
	handle = start_transaction(inode);
4600
	if (IS_ERR(handle))
4601 4602 4603
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4604
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4605

4606 4607 4608
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4609

4610
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4623
	if (ext4_orphan_add(handle, inode))
4624 4625
		goto out_stop;

4626 4627 4628 4629 4630
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4631

4632
	ext4_discard_preallocations(inode);
4633

4634 4635 4636 4637 4638
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4639
	 * ext4 *really* writes onto the disk inode.
4640 4641 4642 4643
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4644 4645
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4646 4647 4648
		goto do_indirects;
	}

4649
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4650 4651 4652 4653
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4654
			ext4_free_branches(handle, inode, NULL,
4655 4656 4657 4658 4659 4660 4661 4662 4663
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4664
			ext4_free_branches(handle, inode, partial->bh,
4665 4666 4667 4668 4669 4670
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4671
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4672 4673 4674
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4675
		brelse(partial->bh);
4676 4677 4678 4679 4680 4681
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4682
		nr = i_data[EXT4_IND_BLOCK];
4683
		if (nr) {
4684 4685
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4686
		}
4687 4688
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4689
		if (nr) {
4690 4691
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4692
		}
4693 4694
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4695
		if (nr) {
4696 4697
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4698
		}
4699
	case EXT4_TIND_BLOCK:
4700 4701 4702
		;
	}

4703
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4704
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4705
	ext4_mark_inode_dirty(handle, inode);
4706 4707 4708 4709 4710 4711

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4712
		ext4_handle_sync(handle);
4713 4714 4715 4716 4717
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4718
	 * ext4_delete_inode(), and we allow that function to clean up the
4719 4720 4721
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4722
		ext4_orphan_del(handle, inode);
4723

4724
	ext4_journal_stop(handle);
4725 4726 4727
}

/*
4728
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4729 4730 4731 4732
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4733 4734
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4735
{
4736 4737 4738 4739 4740 4741
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4742
	iloc->bh = NULL;
4743 4744
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4745

4746 4747 4748
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4749 4750
		return -EIO;

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4761
	if (!bh) {
4762 4763
		ext4_error(sb, "unable to read inode block - "
			   "inode=%lu, block=%llu", inode->i_ino, block);
4764 4765 4766 4767
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4791
			int i, start;
4792

4793
			start = inode_offset & ~(inodes_per_block - 1);
4794

4795 4796
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4809
			for (i = start; i < start + inodes_per_block; i++) {
4810 4811
				if (i == inode_offset)
					continue;
4812
				if (ext4_test_bit(i, bitmap_bh->b_data))
4813 4814 4815
					break;
			}
			brelse(bitmap_bh);
4816
			if (i == start + inodes_per_block) {
4817 4818 4819 4820 4821 4822 4823 4824 4825
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4826 4827 4828 4829 4830 4831 4832 4833 4834
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4835
			/* s_inode_readahead_blks is always a power of 2 */
4836 4837 4838 4839 4840 4841 4842
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4843
				num -= ext4_itable_unused_count(sb, gdp);
4844 4845 4846 4847 4848 4849 4850
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4861 4862
			ext4_error(sb, "unable to read inode block - inode=%lu,"
				   " block=%llu", inode->i_ino, block);
4863 4864 4865 4866 4867 4868 4869 4870 4871
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4872
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4873 4874
{
	/* We have all inode data except xattrs in memory here. */
4875
	return __ext4_get_inode_loc(inode, iloc,
4876
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4877 4878
}

4879
void ext4_set_inode_flags(struct inode *inode)
4880
{
4881
	unsigned int flags = EXT4_I(inode)->i_flags;
4882 4883

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4884
	if (flags & EXT4_SYNC_FL)
4885
		inode->i_flags |= S_SYNC;
4886
	if (flags & EXT4_APPEND_FL)
4887
		inode->i_flags |= S_APPEND;
4888
	if (flags & EXT4_IMMUTABLE_FL)
4889
		inode->i_flags |= S_IMMUTABLE;
4890
	if (flags & EXT4_NOATIME_FL)
4891
		inode->i_flags |= S_NOATIME;
4892
	if (flags & EXT4_DIRSYNC_FL)
4893 4894 4895
		inode->i_flags |= S_DIRSYNC;
}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4914

4915
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4916
				  struct ext4_inode_info *ei)
4917 4918
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4919 4920
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4921 4922 4923 4924 4925 4926

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4927 4928 4929 4930 4931 4932
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4933 4934 4935 4936
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4937

4938
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4939
{
4940 4941
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4942 4943
	struct ext4_inode_info *ei;
	struct inode *inode;
4944
	journal_t *journal = EXT4_SB(sb)->s_journal;
4945
	long ret;
4946 4947
	int block;

4948 4949 4950 4951 4952 4953 4954
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4955
	iloc.bh = 0;
4956

4957 4958
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4959
		goto bad_inode;
4960
	raw_inode = ext4_raw_inode(&iloc);
4961 4962 4963
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4964
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4965 4966 4967 4968 4969
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4970
	ei->i_state_flags = 0;
4971 4972 4973 4974 4975 4976 4977 4978 4979
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4980
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4981
			/* this inode is deleted */
4982
			ret = -ESTALE;
4983 4984 4985 4986 4987 4988 4989 4990
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4991
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4992
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4993
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4994 4995
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4996
	inode->i_size = ext4_isize(raw_inode);
4997
	ei->i_disksize = inode->i_size;
4998 4999 5000
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5001 5002
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5003
	ei->i_last_alloc_group = ~0;
5004 5005 5006 5007
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5008
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5009 5010 5011
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5037
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5038
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5039
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5040
		    EXT4_INODE_SIZE(inode->i_sb)) {
5041
			ret = -EIO;
5042
			goto bad_inode;
5043
		}
5044 5045
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5046 5047
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5048 5049
		} else {
			__le32 *magic = (void *)raw_inode +
5050
					EXT4_GOOD_OLD_INODE_SIZE +
5051
					ei->i_extra_isize;
5052
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5053
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5054 5055 5056 5057
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5058 5059 5060 5061 5062
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5063 5064 5065 5066 5067 5068 5069
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5070
	ret = 0;
5071
	if (ei->i_file_acl &&
5072
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5073
		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5074 5075 5076 5077
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5078 5079 5080 5081 5082
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5083
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5084 5085
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5086
		/* Validate block references which are part of inode */
5087 5088
		ret = ext4_check_inode_blockref(inode);
	}
5089
	if (ret)
5090
		goto bad_inode;
5091

5092
	if (S_ISREG(inode->i_mode)) {
5093 5094 5095
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5096
	} else if (S_ISDIR(inode->i_mode)) {
5097 5098
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5099
	} else if (S_ISLNK(inode->i_mode)) {
5100
		if (ext4_inode_is_fast_symlink(inode)) {
5101
			inode->i_op = &ext4_fast_symlink_inode_operations;
5102 5103 5104
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5105 5106
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5107
		}
5108 5109
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5110
		inode->i_op = &ext4_special_inode_operations;
5111 5112 5113 5114 5115 5116
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5117 5118
	} else {
		ret = -EIO;
5119
		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5120 5121
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
5122
	}
5123
	brelse(iloc.bh);
5124
	ext4_set_inode_flags(inode);
5125 5126
	unlock_new_inode(inode);
	return inode;
5127 5128

bad_inode:
5129
	brelse(iloc.bh);
5130 5131
	iget_failed(inode);
	return ERR_PTR(ret);
5132 5133
}

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5147
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5148
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
5149
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5150 5151 5152 5153 5154 5155
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5156 5157 5158 5159
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5160
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5161
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
5162
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5163
	} else {
A
Aneesh Kumar K.V 已提交
5164 5165 5166 5167 5168
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5169
	}
5170
	return 0;
5171 5172
}

5173 5174 5175 5176 5177 5178 5179
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5180
static int ext4_do_update_inode(handle_t *handle,
5181
				struct inode *inode,
5182
				struct ext4_iloc *iloc)
5183
{
5184 5185
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5186 5187 5188 5189 5190
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5191
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5192
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5193

5194
	ext4_get_inode_flags(ei);
5195
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5196
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5197 5198 5199 5200 5201 5202
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5203
		if (!ei->i_dtime) {
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5221 5222 5223 5224 5225 5226

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5227 5228
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5229
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5230
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5231 5232
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5233 5234
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5235
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5252
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5253
			sb->s_dirt = 1;
5254
			ext4_handle_sync(handle);
5255
			err = ext4_handle_dirty_metadata(handle, NULL,
5256
					EXT4_SB(sb)->s_sbh);
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5271 5272 5273
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5274

5275 5276 5277 5278 5279
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5280
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5281 5282
	}

5283
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5284
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5285 5286
	if (!err)
		err = rc;
5287
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5288

5289
	ext4_update_inode_fsync_trans(handle, inode, 0);
5290
out_brelse:
5291
	brelse(bh);
5292
	ext4_std_error(inode->i_sb, err);
5293 5294 5295 5296
	return err;
}

/*
5297
 * ext4_write_inode()
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5314
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5331
int ext4_write_inode(struct inode *inode, int wait)
5332
{
5333 5334
	int err;

5335 5336 5337
	if (current->flags & PF_MEMALLOC)
		return 0;

5338 5339 5340 5341 5342 5343
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5344

5345 5346 5347 5348 5349 5350
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5351

5352 5353 5354
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
5355 5356 5357
		if (wait)
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5358 5359
			ext4_error(inode->i_sb, "IO error syncing inode, "
				   "inode=%lu, block=%llu", inode->i_ino,
5360 5361 5362
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5363 5364
	}
	return err;
5365 5366 5367
}

/*
5368
 * ext4_setattr()
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5382 5383 5384 5385 5386 5387 5388 5389
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5390
 */
5391
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5407
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5408
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5409 5410 5411 5412
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5413
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5414
		if (error) {
5415
			ext4_journal_stop(handle);
5416 5417 5418 5419 5420 5421 5422 5423
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5424 5425
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5426 5427
	}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5439
	if (S_ISREG(inode->i_mode) &&
5440 5441 5442
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5443 5444
		handle_t *handle;

5445
		handle = ext4_journal_start(inode, 3);
5446 5447 5448 5449 5450
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5451 5452 5453
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5454 5455
		if (!error)
			error = rc;
5456
		ext4_journal_stop(handle);
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5473 5474 5475
		/* ext4_truncate will clear the flag */
		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
			ext4_truncate(inode);
5476 5477 5478 5479
	}

	rc = inode_setattr(inode, attr);

5480
	/* If inode_setattr's call to ext4_truncate failed to get a
5481 5482 5483
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5484
		ext4_orphan_del(NULL, inode);
5485 5486

	if (!rc && (ia_valid & ATTR_MODE))
5487
		rc = ext4_acl_chmod(inode);
5488 5489

err_out:
5490
	ext4_std_error(inode->i_sb, error);
5491 5492 5493 5494 5495
	if (!error)
		error = rc;
	return error;
}

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5551 5552
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5553
}
5554

5555
/*
5556 5557 5558
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5559
 *
5560
 * If datablocks are discontiguous, they are possible to spread over
5561
 * different block groups too. If they are contiuguous, with flexbg,
5562
 * they could still across block group boundary.
5563
 *
5564 5565 5566 5567
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5568 5569
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5596 5597
	if (groups > ngroups)
		groups = ngroups;
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5612 5613
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5614
 *
5615
 * This could be called via ext4_write_begin()
5616
 *
5617
 * We need to consider the worse case, when
5618
 * one new block per extent.
5619
 */
A
Alex Tomas 已提交
5620
int ext4_writepage_trans_blocks(struct inode *inode)
5621
{
5622
	int bpp = ext4_journal_blocks_per_page(inode);
5623 5624
	int ret;

5625
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5626

5627
	/* Account for data blocks for journalled mode */
5628
	if (ext4_should_journal_data(inode))
5629
		ret += bpp;
5630 5631
	return ret;
}
5632 5633 5634 5635 5636

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5637
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5638 5639 5640 5641 5642 5643 5644 5645 5646
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5647
/*
5648
 * The caller must have previously called ext4_reserve_inode_write().
5649 5650
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5651
int ext4_mark_iloc_dirty(handle_t *handle,
5652
			 struct inode *inode, struct ext4_iloc *iloc)
5653 5654 5655
{
	int err = 0;

5656 5657 5658
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5659 5660 5661
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5662
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5663
	err = ext4_do_update_inode(handle, inode, iloc);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5674 5675
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5676
{
5677 5678 5679 5680 5681 5682 5683 5684 5685
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5686 5687
		}
	}
5688
	ext4_std_error(inode->i_sb, err);
5689 5690 5691
	return err;
}

5692 5693 5694 5695
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5696 5697 5698 5699
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
5714 5715
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5748
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5749
{
5750
	struct ext4_iloc iloc;
5751 5752 5753
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5754 5755

	might_sleep();
5756
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5757 5758
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5759
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5773 5774
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5775 5776
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5777
					ext4_warning(inode->i_sb,
5778 5779 5780
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5781 5782
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5783 5784 5785 5786
				}
			}
		}
	}
5787
	if (!err)
5788
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5789 5790 5791 5792
	return err;
}

/*
5793
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5794 5795 5796 5797 5798
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5799
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5800 5801 5802 5803 5804 5805
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5806
void ext4_dirty_inode(struct inode *inode)
5807 5808 5809
{
	handle_t *handle;

5810
	handle = ext4_journal_start(inode, 2);
5811 5812
	if (IS_ERR(handle))
		goto out;
5813 5814 5815

	ext4_mark_inode_dirty(handle, inode);

5816
	ext4_journal_stop(handle);
5817 5818 5819 5820 5821 5822 5823 5824
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5825
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5826 5827 5828
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5829
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5830
{
5831
	struct ext4_iloc iloc;
5832 5833 5834

	int err = 0;
	if (handle) {
5835
		err = ext4_get_inode_loc(inode, &iloc);
5836 5837
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5838
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5839
			if (!err)
5840
				err = ext4_handle_dirty_metadata(handle,
5841
								 NULL,
5842
								 iloc.bh);
5843 5844 5845
			brelse(iloc.bh);
		}
	}
5846
	ext4_std_error(inode->i_sb, err);
5847 5848 5849 5850
	return err;
}
#endif

5851
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5867
	journal = EXT4_JOURNAL(inode);
5868 5869
	if (!journal)
		return 0;
5870
	if (is_journal_aborted(journal))
5871 5872
		return -EROFS;

5873 5874
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5885
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5886
	else
5887 5888
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5889

5890
	jbd2_journal_unlock_updates(journal);
5891 5892 5893

	/* Finally we can mark the inode as dirty. */

5894
	handle = ext4_journal_start(inode, 1);
5895 5896 5897
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5898
	err = ext4_mark_inode_dirty(handle, inode);
5899
	ext4_handle_sync(handle);
5900 5901
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5902 5903 5904

	return err;
}
5905 5906 5907 5908 5909 5910

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5911
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5912
{
5913
	struct page *page = vmf->page;
5914 5915 5916
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5917
	void *fsdata;
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5942 5943 5944 5945 5946 5947 5948
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5949 5950
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5951 5952
					ext4_bh_unmapped)) {
			unlock_page(page);
5953
			goto out_unlock;
5954
		}
5955
	}
5956
	unlock_page(page);
5957 5958 5959 5960 5961 5962 5963 5964
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5965
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5966 5967 5968
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5969
			len, len, page, fsdata);
5970 5971 5972 5973
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5974 5975
	if (ret)
		ret = VM_FAULT_SIGBUS;
5976 5977 5978
	up_read(&inode->i_alloc_sem);
	return ret;
}