Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Xiaomi
Mace
提交
4c535c33
Mace
项目概览
Xiaomi
/
Mace
通知
106
Star
40
Fork
27
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
4c535c33
编写于
5月 17, 2018
作者:
W
wuchenghui
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix dsp converter
上级
1c874957
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
75 addition
and
17 deletion
+75
-17
mace/python/tools/tf_dsp_converter_lib.py
mace/python/tools/tf_dsp_converter_lib.py
+75
-17
未找到文件。
mace/python/tools/tf_dsp_converter_lib.py
浏览文件 @
4c535c33
...
...
@@ -95,12 +95,19 @@ def add_shape_const_node(net_def, op, values, name):
def
convert_op_outputs
(
mace_op_def
,
tf_op
):
mace_op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
output
)
for
output
in
tf_op
.
outputs
])
mace_op_def
.
output_type
.
extend
(
[
tf_dtype_2_mace_dtype
(
output
.
dtype
)
for
output
in
tf_op
.
outputs
])
output_shapes
=
[]
for
output
in
tf_op
.
outputs
:
output_shape
=
mace_pb2
.
OutputShape
()
output_shape
.
dims
.
extend
(
output
.
shape
.
as_list
())
shape_list
=
output
.
shape
.
as_list
()
if
not
shape_list
:
shape_list
=
[
1
]
elif
len
(
shape_list
)
==
2
:
shape_list
=
[
1
,
1
,
shape_list
[
0
],
shape_list
[
1
]]
output_shape
.
dims
.
extend
(
shape_list
)
output_shapes
.
append
(
output_shape
)
mace_op_def
.
output_shape
.
extend
(
output_shapes
)
...
...
@@ -159,8 +166,6 @@ def convert_ops(unresolved_ops, resolved_ops, net_def, output_node, dsp_ops):
op_def
.
input
.
append
(
input_tensor
.
name
)
op_def
.
input
.
extend
([
t
.
name
for
t
in
s2b_op
.
inputs
[
1
:]])
op_def
.
input
.
extend
([
min_tensor
.
name
,
max_tensor
.
name
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
quantize_op
.
outputs
])
convert_op_outputs
(
op_def
,
quantize_op
)
elif
len
(
first_op
.
outputs
)
>
0
and
\
first_op
.
type
==
'QuantizedReshape'
and
\
...
...
@@ -193,9 +198,71 @@ def convert_ops(unresolved_ops, resolved_ops, net_def, output_node, dsp_ops):
op_def
.
type
=
dsp_ops
.
map_nn_op
(
'QuantizedSoftmax'
)
op_def
.
input
.
extend
(
[
input_tensor
.
name
,
min_tensor
.
name
,
max_tensor
.
name
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
quantize_reshape_op
.
outputs
])
convert_op_outputs
(
op_def
,
quantize_reshape_op
)
# remove Squeeze
elif
len
(
first_op
.
outputs
)
>
0
and
\
first_op
.
type
==
'Requantize'
and
\
len
(
first_op
.
outputs
[
0
].
consumers
())
>
0
and
\
first_op
.
outputs
[
0
].
consumers
()[
0
].
type
==
'Dequantize'
and
\
len
(
first_op
.
outputs
[
0
].
consumers
()[
0
].
outputs
[
0
].
consumers
())
\
>
0
and
\
first_op
.
outputs
[
0
].
consumers
()[
0
].
outputs
[
0
].
consumers
()[
0
].
type
\
==
'Squeeze'
:
dequantize_op
=
first_op
.
outputs
[
0
].
consumers
()[
0
]
squeeze_op
=
dequantize_op
.
outputs
[
0
].
consumers
()[
0
]
reshape_op
=
squeeze_op
.
outputs
[
0
].
consumers
()[
0
]
min_op
=
reshape_op
.
outputs
[
0
].
consumers
()[
0
]
max_op
=
reshape_op
.
outputs
[
0
].
consumers
()[
1
]
quantize_op
=
min_op
.
outputs
[
0
].
consumers
()[
0
]
resolved_ops
.
add
(
dequantize_op
.
name
)
resolved_ops
.
add
(
squeeze_op
.
name
)
resolved_ops
.
add
(
reshape_op
.
name
)
resolved_ops
.
add
(
min_op
.
name
)
resolved_ops
.
add
(
max_op
.
name
)
resolved_ops
.
add
(
quantize_op
.
name
)
op_def
.
name
=
quantize_op
.
name
op_def
.
input
.
extend
([
t
.
name
for
t
in
first_op
.
inputs
])
convert_op_outputs
(
op_def
,
quantize_op
)
# Squeeze -> Softmax
next_op
=
quantize_op
.
outputs
[
0
].
consumers
()[
0
]
\
if
len
(
quantize_op
.
outputs
)
>
0
else
None
dequantize_op
=
next_op
.
outputs
[
0
].
consumers
()[
0
]
\
if
next_op
and
len
(
next_op
.
outputs
)
>
0
and
\
next_op
.
type
==
'QuantizedReshape'
and
\
len
(
next_op
.
outputs
[
0
].
consumers
())
>
0
else
None
softmax_op
=
dequantize_op
.
outputs
[
0
].
consumers
()[
0
]
\
if
dequantize_op
and
len
(
dequantize_op
.
outputs
)
>
0
and
\
dequantize_op
.
type
==
'Dequantize'
and
\
len
(
dequantize_op
.
outputs
[
0
].
consumers
())
>
0
else
None
if
softmax_op
and
softmax_op
.
type
==
'Softmax'
:
reshape_op
=
softmax_op
.
outputs
[
0
].
consumers
()[
0
]
min_op
=
reshape_op
.
outputs
[
0
].
consumers
()[
0
]
max_op
=
reshape_op
.
outputs
[
0
].
consumers
()[
1
]
quantize_op
=
min_op
.
outputs
[
0
].
consumers
()[
0
]
quantize_reshape_op
=
quantize_op
.
outputs
[
0
].
consumers
()[
0
]
resolved_ops
.
add
(
next_op
.
name
)
resolved_ops
.
add
(
dequantize_op
.
name
)
resolved_ops
.
add
(
softmax_op
.
name
)
resolved_ops
.
add
(
reshape_op
.
name
)
resolved_ops
.
add
(
min_op
.
name
)
resolved_ops
.
add
(
max_op
.
name
)
resolved_ops
.
add
(
quantize_op
.
name
)
resolved_ops
.
add
(
quantize_reshape_op
.
name
)
softmax_op_def
=
net_def
.
op
.
add
()
softmax_op_def
.
padding
=
padding_mode
[
'NA'
]
softmax_op_def
.
name
=
quantize_reshape_op
.
name
softmax_op_def
.
type
=
dsp_ops
.
map_nn_op
(
'QuantizedSoftmax'
)
softmax_op_def
.
input
.
extend
([
get_tensor_name_from_op
(
op_def
.
name
,
0
),
get_tensor_name_from_op
(
op_def
.
name
,
1
),
get_tensor_name_from_op
(
op_def
.
name
,
2
)])
convert_op_outputs
(
softmax_op_def
,
quantize_reshape_op
)
elif
len
(
first_op
.
outputs
)
>
0
and
first_op
.
type
==
'Dequantize'
and
\
len
(
first_op
.
outputs
[
0
].
consumers
())
>
0
and
\
first_op
.
outputs
[
0
].
consumers
()[
0
].
type
==
'Tanh'
:
...
...
@@ -220,8 +287,6 @@ def convert_ops(unresolved_ops, resolved_ops, net_def, output_node, dsp_ops):
op_def
.
type
=
dsp_ops
.
map_nn_op
(
'Quantized'
+
tanh_op
.
type
)
op_def
.
input
.
extend
(
[
input_tensor
.
name
,
min_tensor
.
name
,
max_tensor
.
name
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
quantize_op
.
outputs
])
convert_op_outputs
(
op_def
,
quantize_op
)
# tanh is last op
else
:
...
...
@@ -251,8 +316,6 @@ def convert_ops(unresolved_ops, resolved_ops, net_def, output_node, dsp_ops):
get_tensor_name_from_op
(
op_def
.
name
,
1
),
get_tensor_name_from_op
(
op_def
.
name
,
2
)
])
new_tanh_op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
tanh_op
.
outputs
[
0
])])
convert_op_outputs
(
new_tanh_op_def
,
tanh_op
)
elif
has_padding_and_strides
(
first_op
):
op_def
.
padding
=
padding_mode
[
first_op
.
get_attr
(
'padding'
)]
...
...
@@ -266,19 +329,13 @@ def convert_ops(unresolved_ops, resolved_ops, net_def, output_node, dsp_ops):
strides_tensor
=
add_shape_const_node
(
net_def
,
first_op
,
strides
,
'strides'
)
op_def
.
input
.
extend
([
strides_tensor
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
first_op
.
outputs
])
convert_op_outputs
(
op_def
,
first_op
)
elif
is_node_flatten_reshape
(
first_op
):
op_def
.
type
=
'Flatten'
op_def
.
input
.
extend
([
t
.
name
for
t
in
first_op
.
inputs
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
first_op
.
outputs
])
op_def
.
input
.
extend
([
first_op
.
inputs
[
0
].
name
])
convert_op_outputs
(
op_def
,
first_op
)
elif
dsp_ops
.
has_op
(
first_op
.
type
):
op_def
.
input
.
extend
([
t
.
name
for
t
in
first_op
.
inputs
])
op_def
.
out_max_byte_size
.
extend
(
[
max_elem_size
(
out
)
for
out
in
first_op
.
outputs
])
convert_op_outputs
(
op_def
,
first_op
)
else
:
raise
Exception
(
'Unsupported op: '
,
first_op
)
...
...
@@ -478,7 +535,8 @@ def fuse_quantize(net_def, input_node, output_node):
skip_ops
=
skip_ops
.
union
(
[
flatten_op
.
name
,
minf_op
.
name
,
maxf_op
.
name
])
skip_tensors
=
skip_tensors
.
union
(
[
flatten_op
.
input
[
1
],
minf_op
.
input
[
1
],
maxf_op
.
input
[
1
]])
[
minf_op
.
input
[
0
],
maxf_op
.
input
[
0
],
quantize_op
.
input
[
1
],
quantize_op
.
input
[
2
]])
quantize_op
.
type
=
'AutoQuantize'
del
quantize_op
.
input
[
1
:]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录