advanced_usage.rst 13.6 KB
Newer Older
L
Liangliang He 已提交
1
Advanced usage
L
liutuo 已提交
2
===============
L
Liangliang He 已提交
3

L
liutuo 已提交
4 5 6
This part contains the full usage of MACE.

Overview
L
liutuo 已提交
7
---------
L
liutuo 已提交
8 9

As mentioned in the previous part, a model deployment file defines a case of model deployment.
L
Liangliang He 已提交
10 11
The building process includes parsing model deployment file, converting models,
building MACE core library and packing generated model libraries.
L
liutuo 已提交
12 13

Deployment file
L
Liangliang He 已提交
14
---------------
L
liutuo 已提交
15 16 17 18 19 20 21 22 23 24


One deployment file will generate one library normally, but if more than one ABIs are specified,
one library will be generated for each ABI.
A deployment file can also contain multiple models. For example, an AI camera application may
contain face recognition, object recognition, and voice recognition models, all of which can be defined
in one deployment file.

* **Example**

25
    Here is an example deployment file with two models.
L
liutuo 已提交
26

27
    .. literalinclude:: models/demo_models.yml
L
liutuo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
        :language: yaml


* **Configurations**


.. list-table::
    :header-rows: 1

    * - Options
      - Usage
    * - library_name
      - Library name.
    * - target_abis
      - The target ABI(s) to build, could be 'host', 'armeabi-v7a' or 'arm64-v8a'.
L
liuqi 已提交
43
        If more than one ABIs will be used, separate them by commas.
L
liutuo 已提交
44 45
    * - target_socs
      - [optional] Build for specific SoCs.
46 47 48 49
    * - model_graph_format
      - model graph format, could be 'file' or 'code'. 'file' for converting model graph to ProtoBuf file(.pb) and 'code' for converting model graph to c++ code.
    * - model_data_format
      - model data format, could be 'file' or 'code'. 'file' for converting model weight to data file(.data) and 'code' for converting model weight to c++ code.
L
liutuo 已提交
50
    * - model_name
L
liuqi 已提交
51
      - model name should be unique if there are more than one models.
L
liutuo 已提交
52 53 54 55
        **LIMIT: if build_type is code, model_name will be used in c++ code so that model_name must comply with c++ name specification.**
    * - platform
      - The source framework, tensorflow or caffe.
    * - model_file_path
L
liuqi 已提交
56
      - The path of your model file which can be local path or remote URL.
L
liutuo 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    * - model_sha256_checksum
      - The SHA256 checksum of the model file.
    * - weight_file_path
      - [optional] The path of Caffe model weights file.
    * - weight_sha256_checksum
      - [optional] The SHA256 checksum of Caffe model weights file.
    * - subgraphs
      - subgraphs key. **DO NOT EDIT**
    * - input_tensors
      - The input tensor name(s) (tensorflow) or top name(s) of inputs' layer (caffe).
        If there are more than one tensors, use one line for a tensor.
    * - output_tensors
      - The output tensor name(s) (tensorflow) or top name(s) of outputs' layer (caffe).
        If there are more than one tensors, use one line for a tensor.
    * - input_shapes
      - The shapes of the input tensors, in NHWC order.
    * - output_shapes
      - The shapes of the output tensors, in NHWC order.
    * - input_ranges
      - The numerical range of the input tensors' data, default [-1, 1]. It is only for test.
    * - validation_inputs_data
      - [optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used.
79 80
    * - validation_threshold
      - [optional] Specify the similarity threshold for validation. A dict with key in 'CPU', 'GPU' and/or 'HEXAGON' and value <= 1.0.
L
liutuo 已提交
81 82 83 84 85 86 87 88 89
    * - runtime
      - The running device, one of [cpu, gpu, dsp, cpu_gpu]. cpu_gpu contains CPU and GPU model definition so you can run the model on both CPU and GPU.
    * - data_type
      - [optional] The data type used for specified runtime. [fp16_fp32, fp32_fp32] for GPU, default is fp16_fp32, [fp32] for CPU and [uint8] for DSP.
    * - limit_opencl_kernel_time
      - [optional] Whether splitting the OpenCL kernel within 1 ms to keep UI responsiveness, default is 0.
    * - obfuscate
      - [optional] Whether to obfuscate the model operator name, default to 0.
    * - winograd
90
      - [optional] Which type winograd to use, could be [0, 2, 4]. 0 for disable winograd, 2 and 4 for enable winograd, 4 may be faster than 2 but may take more memory.
L
liutuo 已提交
91 92 93 94 95 96 97 98


.. note::

    Some command tools:

    .. code:: bash

L
liuqi 已提交
99 100
        # Get device's soc info.
        adb shell getprop | grep platform
L
liutuo 已提交
101 102

        # command for generating sha256_sum
L
liutuo 已提交
103
        sha256sum /path/to/your/file
L
liutuo 已提交
104 105


L
Liangliang He 已提交
106 107
Advanced usage
--------------
L
liutuo 已提交
108

L
Liangliang He 已提交
109 110 111
There are two common advanced use cases:
  - converting model to C++ code.
  - tuning GPU kernels for a specific SoC.
L
liutuo 已提交
112

L
Liangliang He 已提交
113
* **Convert model(s) to C++ code**
L
liutuo 已提交
114

L
liuqi 已提交
115
    .. warning::
L
liutuo 已提交
116

L
liuqi 已提交
117
         If you want to use this case, you can just use static mace library.
L
liutuo 已提交
118

119
    * **1. Change the model deployment file(.yml)**
L
liutuo 已提交
120

L
Liangliang He 已提交
121
        If you want to protect your model, you can convert model to C++ code. there are also two cases:
L
liutuo 已提交
122

L
liuqi 已提交
123
        * convert model graph to code and model weight to file with below model configuration.
L
liutuo 已提交
124

L
liuqi 已提交
125
        .. code:: sh
L
liutuo 已提交
126

L
liuqi 已提交
127 128
            model_graph_format: code
            model_data_format: file
L
liutuo 已提交
129

L
liuqi 已提交
130
        * convert both model graph and model weight to code with below model configuration.
L
liutuo 已提交
131

L
liuqi 已提交
132
        .. code:: sh
L
liutuo 已提交
133

L
liuqi 已提交
134 135
            model_graph_format: code
            model_data_format: code
L
liutuo 已提交
136

L
liuqi 已提交
137
        .. note::
L
liutuo 已提交
138

139
             Another model protection method is using ``obfuscate`` to obfuscate names of model's operators.
L
liutuo 已提交
140

L
liuqi 已提交
141
    * **2. Convert model(s) to code**
L
liutuo 已提交
142

L
liuqi 已提交
143
        .. code:: sh
L
liutuo 已提交
144

L
liuqi 已提交
145
            python tools/converter.py convert --config=/path/to/model_deployment_file.yml
L
liutuo 已提交
146

L
liuqi 已提交
147
        The command will generate **${library_name}.a** in **builds/${library_name}/model** directory and
148
        ** *.h ** in **builds/${library_name}/include** like the following dir-tree.
L
liutuo 已提交
149

L
liuqi 已提交
150
        .. code::
L
liutuo 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163
             # model_graph_format: code
             # model_data_format: file

             builds
               ├── include
               │   └── mace
               │       └── public
               │           ├── mace_engine_factory.h
               │           └── mobilenet_v1.h
               └── model
                   ├── mobilenet-v1.a
                   └── mobilenet_v1.data
L
liutuo 已提交
164

L
liuqi 已提交
165 166 167 168 169 170 171 172 173 174 175
             # model_graph_format: code
             # model_data_format: code

             builds
               ├── include
               │   └── mace
               │       └── public
               │           ├── mace_engine_factory.h
               │           └── mobilenet_v1.h
               └── model
                   └── mobilenet-v1.a
L
liutuo 已提交
176

L
liuqi 已提交
177 178
    * **3. Deployment**
        * Link `libmace.a` and `${library_name}.a` to your target.
179
        * Refer to \ ``mace/examples/example.cc``\ for full usage. The following list the key steps.
L
liutuo 已提交
180

L
liuqi 已提交
181
        .. code:: cpp
L
liutuo 已提交
182

L
liuqi 已提交
183 184 185 186 187 188
            // Include the headers
            #include "mace/public/mace.h"
            #include "mace/public/mace_runtime.h"
            // If the model_graph_format is code
            #include "mace/public/${model_name}.h"
            #include "mace/public/mace_engine_factory.h"
L
liutuo 已提交
189

L
liuqi 已提交
190
            // ... Same with the code in basic usage
L
liutuo 已提交
191

L
liuqi 已提交
192 193 194 195 196 197
            // 4. Create MaceEngine instance
            std::shared_ptr<mace::MaceEngine> engine;
            MaceStatus create_engine_status;
            // Create Engine from compiled code
            create_engine_status =
                CreateMaceEngineFromCode(model_name.c_str(),
L
liuqi 已提交
198
                                         model_data_file, // empty string if model_data_format is code
L
liuqi 已提交
199 200 201 202 203 204 205
                                         input_names,
                                         output_names,
                                         device_type,
                                         &engine);
            if (create_engine_status != MaceStatus::MACE_SUCCESS) {
              // Report error
            }
L
liutuo 已提交
206

L
liuqi 已提交
207
            // ... Same with the code in basic usage
L
liutuo 已提交
208 209


L
Liangliang He 已提交
210
* **Tuning for specific SoC's GPU**
L
liutuo 已提交
211

212
    If you want to use the GPU of a specific device, you can just specify the ``target_socs`` in your YAML file and
L
Liangliang He 已提交
213
    then tune the MACE lib for it (OpenCL kernels), which may get 1~10% performance improvement.
L
liutuo 已提交
214

215
    * **1. Change the model deployment file(.yml)**
L
liutuo 已提交
216

217
        Specify ``target_socs`` in your model deployment file(.yml):
L
liutuo 已提交
218

L
liuqi 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        .. code:: sh

            target_socs: [sdm845]

        .. note::

            Get device's soc info: `adb shell getprop | grep platform`

    * **2. Convert model(s)**

        .. code:: sh

            python tools/converter.py convert --config=/path/to/model_deployment_file.yml

    * **3. Tuning**

        The tools/converter.py will enable automatic tuning for GPU kernels. This usually takes some
        time to finish depending on the complexity of your model.

        .. note::

             You should plug in device(s) with the specific SoC(s).


        .. code:: sh

            python tools/converter.py run --config=/path/to/model_deployment_file.yml --validate

247
        The command will generate two files in `builds/${library_name}/opencl`, like the following dir-tree.
L
liuqi 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

        .. code::

              builds
              └── mobilenet-v2
                  ├── model
                  │   ├── mobilenet_v2.data
                  │   └── mobilenet_v2.pb
                  └── opencl
                      └── arm64-v8a
                         ├── moblinet-v2_compiled_opencl_kernel.MiNote3.sdm660.bin
                         └── moblinet-v2_tuned_opencl_parameter.MiNote3.sdm660.bin


        * **mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin** stands for the OpenCL binaries
          used for your models, which could accelerate the initialization stage.
          Details please refer to `OpenCL Specification <https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateProgramWithBinary.html>`__.
        * **mobilenet-v2-tuned_opencl_parameter.MI6.msm8998.bin** stands for the tuned OpenCL parameters
L
Liangliang He 已提交
266
          for the SoC.
L
liuqi 已提交
267 268

    * **4. Deployment**
L
liuqi 已提交
269 270
        * Change the names of files generated above for not collision and push them to **your own device's directory**.
        * Use like the previous procedure, below lists the key steps differently.
L
liuqi 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

        .. code:: cpp

            // Include the headers
            #include "mace/public/mace.h"
            #include "mace/public/mace_runtime.h"

            // 0. Set pre-compiled OpenCL binary program file paths and OpenCL parameters file path when available
            if (device_type == DeviceType::GPU) {
              mace::SetOpenCLBinaryPaths(path/to/opencl_binary_paths);
              mace::SetOpenCLParameterPath(path/to/opencl_parameter_file);
            }

            // ... Same with the code in basic usage.


Useful Commands
L
Liangliang He 已提交
288
---------------
L
liuqi 已提交
289 290 291 292 293 294 295 296 297 298 299
* **run the model**

.. code:: sh

    # Test model run time
    python tools/converter.py run --config=/path/to/model_deployment_file.yml --round=100

    # Validate the correctness by comparing the results against the
    # original model and framework, measured with cosine distance for similarity.
    python tools/converter.py run --config=/path/to/model_deployment_file.yml --validate

300
    # Check the memory usage of the model(**Just keep only one model in deployment file**)
L
liuqi 已提交
301 302 303 304 305 306 307 308
    python tools/converter.py run --config=/path/to/model_deployment_file.yml --round=10000 &
    sleep 5
    adb shell dumpsys meminfo | grep mace_run
    kill %1


.. warning::

309
    ``run`` rely on ``convert`` command, you should ``convert`` before ``run``.
L
liuqi 已提交
310

311
* **benchmark and profile model**
L
liuqi 已提交
312 313 314 315 316 317 318 319

.. code:: sh

    # Benchmark model, get detailed statistics of each Op.
    python tools/converter.py benchmark --config=/path/to/model_deployment_file.yml


.. warning::
L
liutuo 已提交
320

L
liuqi 已提交
321
    ``benchmark`` rely on ``convert`` command, you should ``benchmark`` after ``convert``.
L
liutuo 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

**Common arguments**

    .. list-table::
        :header-rows: 1

        * - option
          - type
          - default
          - commands
          - explanation
        * - --omp_num_threads
          - int
          - -1
          - ``run``/``benchmark``
          - number of threads
        * - --cpu_affinity_policy
          - int
          - 1
          - ``run``/``benchmark``
          - 0:AFFINITY_NONE/1:AFFINITY_BIG_ONLY/2:AFFINITY_LITTLE_ONLY
        * - --gpu_perf_hint
          - int
          - 3
          - ``run``/``benchmark``
          - 0:DEFAULT/1:LOW/2:NORMAL/3:HIGH
        * - --gpu_perf_hint
          - int
          - 3
          - ``run``/``benchmark``
          - 0:DEFAULT/1:LOW/2:NORMAL/3:HIGH
        * - --gpu_priority_hint
          - int
          - 3
          - ``run``/``benchmark``
          - 0:DEFAULT/1:LOW/2:NORMAL/3:HIGH

Use ``-h`` to get detailed help.

.. code:: sh

    python tools/converter.py -h
    python tools/converter.py build -h
    python tools/converter.py run -h
    python tools/converter.py benchmark -h
Y
yejianwu 已提交
367 368 369 370 371 372 373 374

Reduce Library Size
-------------------
* **dynamic library**

    The generated dynamic library by script ``tools/build-standalone-lib.sh`` is about ``1.6M`` for
    ``armeabi-v7a`` and ``2.1M`` for ``arm64-v8a``. It can be reduced by modifying some build options.

Y
yejianwu 已提交
375 376
    - If the models don't need to run on device ``dsp``, change the build option ``--define hexagon=true``
      to ``false``. And the library will be decreased about ``100KB``.
Y
yejianwu 已提交
377

Y
yejianwu 已提交
378
    - Futher more, if only ``cpu`` device needed, change ``--define opencl=true`` to ``false``. This way
Y
yejianwu 已提交
379 380 381 382 383 384 385 386
      will reduce half of library size to about ``700KB`` for ``armeabi-v7a`` and ``1000KB`` for ``arm64-v8a``

* **static library**

    - The methods in dynamic library can be useful for static library too. In additional, the static
      library may also contain model graph and model datas if the configs ``model_graph_format`` and
      ``model_data_format`` in deployment file are set to ``code``.

Y
yejianwu 已提交
387
    - It is recommended to use ``version script`` and ``strip`` feature when linking mace static library. The effect is remarkable.