- 18 10月, 2022 9 次提交
-
-
由 Rishika Sinha 提交于
Added info about Windows CPU build destination
-
由 Mihai Maruseac 提交于
Fix minor typos in release notes
-
由 8bitmp3 提交于
-
由 Mihai Maruseac 提交于
-
由 learning-to-play 提交于
Update version numbers for TensorFlow 2.11.0-rc0
-
-
由 learning-to-play 提交于
Update release notes for TensorFlow 2.11.0
-
由 Vinila S 提交于
Update release notes for TensorFlow 2.11.0
-
-
- 17 10月, 2022 3 次提交
-
-
由 A. Unique TensorFlower 提交于
[XLA] Eliminated constant folding for operations that have large number of elements in their operands. PiperOrigin-RevId: 481504087
-
由 Li Lao 提交于
Pretty print TFRT and RunHandlerWorkQueue options. Otherwise, the options are shown as binary data byte-by-byte. PiperOrigin-RevId: 481494878
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481492512
-
- 16 10月, 2022 7 次提交
-
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481443251
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481443061
-
由 Terry Heo 提交于
PiperOrigin-RevId: 481382408
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481375400
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481372151
-
由 Jacques Pienaar 提交于
Seems to be last case in #57926 PiperOrigin-RevId: 481366370
-
由 A. Unique TensorFlower 提交于
[xla:gml_st] Relax a check that refuses to tile parallel dimensions when op contains a reduction dimension The user is responsible for making sure to not ask to generate parallel loops on reduction dimension. PiperOrigin-RevId: 481366310
-
- 15 10月, 2022 21 次提交
-
-
由 Andrew Goodbody 提交于
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481322408
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481322404
-
由 A. Unique TensorFlower 提交于
http://github.com/tensorflow/runtime/commit/4ce3e4da2e21ae4dfcee9366415e55f408c884ec. PiperOrigin-RevId: 481300942
-
由 Eugene Zhulenev 提交于
LLVM seems to have troubles with inlining custom call handlers defined by function pointers. When we use struct, then the custom call body is typically fully inlined into the CustomCallHandler template instantiation and generates better code. PiperOrigin-RevId: 481300474
-
由 Eugene Zhulenev 提交于
Remove last HostContext dependency from XLA PiperOrigin-RevId: 481300092
-
由 A. Unique TensorFlower 提交于
[XLA:GPU] Check that the types used in the matmul are supported by cublasLt. If they are not supported, we fall back to legacy cublas. This fixes an issue found by some JAX dot_general tests which depended on device (p100/v100). There are certain combinations of types which work on some devices but not on others. However, according to the official... PiperOrigin-RevId: 481291878
-
由 Terry Heo 提交于
The flag doesn't compatible with //tensorflow/python/tools:print_selective_registration_header which is needed to generate header file via genrule(). PiperOrigin-RevId: 481287663
-
由 Anish Tondwalkar 提交于
PiperOrigin-RevId: 481281063
-
由 A. Unique TensorFlower 提交于
http://github.com/tensorflow/runtime/commit/e03a192239c4f59c63db1b4d54b4c15f1d0a1ad7. PiperOrigin-RevId: 481277525
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481275791
-
由 A. Unique TensorFlower 提交于
Updates LLVM usage to match [d8415b02a519](https://github.com/llvm/llvm-project/commit/d8415b02a519) PiperOrigin-RevId: 481275732
-
由 Faizan Muhammad 提交于
PiperOrigin-RevId: 481266358
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481265147
-
由 Jian Cai 提交于
PiperOrigin-RevId: 481258105
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481253023
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481252019
-
由 Victor Stone 提交于
[XLA:GPU] Check that the types used in the matmul are supported by cublasLt. If they are not supported, we fall back to legacy cublas. This fixes an issue found by some JAX dot_general tests which depended on device (p100/v100). There are certain combinations of types which work on some devices but not on others. However, according to the official cublasLt documentation, these combinations of types are unsupported by cublasLt on all devices. PiperOrigin-RevId: 481251576
-
由 Catherine Payne 提交于
PiperOrigin-RevId: 481251198
-
由 Penporn Koanantakool 提交于
Guard an aarch64-specific TF-oneDNN code block with an ifdef to make sure it doesn't affect the x86 backend, per discussion here: https://github.com/tensorflow/tensorflow/pull/57987#discussion_r993731524 PiperOrigin-RevId: 481247334
-
由 Yash Katariya 提交于
PiperOrigin-RevId: 481246613
-