Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
wux_labs
Tensorflow
提交
ba36eac6
T
Tensorflow
项目概览
wux_labs
/
Tensorflow
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Tensorflow
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
ba36eac6
编写于
10月 18, 2022
作者:
R
Rishika Sinha
提交者:
GitHub
10月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added info about Windows CPU build destination
Added info about Windows CPU build destination
上级
31223f49
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
8 addition
and
1 deletion
+8
-1
RELEASE.md
RELEASE.md
+8
-1
未找到文件。
RELEASE.md
浏览文件 @
ba36eac6
...
...
@@ -63,6 +63,12 @@
* TF SavedModel:
* Added `fingerprint.pb` to the SavedModel directory. The `fingerprint.pb` file is a protobuf containing the "fingerprint" of the SavedModel. See
the [RFC](https://github.com/tensorflow/community/pull/415) for more details regarding its design and properties.
* TF pip:
* Windows CPU-builds for x86/x64 processors are now built, maintained, tested and released by a third party: Intel. Installing the windows-native
pip packages for `tensorflow` or `tensorflow-cpu` would install Intel's tensorflow-intel package. These packages are provided as-is. Tensorflow
will use reasonable efforts to maintain the availability and integrity of this pip package. There may be delays if the third party fails to
release the pip package. For using TensorFlow GPU on Windows, you will need to install TensorFlow in WSL2.
## Bug Fixes and Other Changes
...
...
@@ -284,7 +290,8 @@ This release contains contributions from many people at Google, as well as:
bfloat16 auto-mixed precision grappler graph optimization pass has been
renamed from `auto_mixed_precision_mkl` to
`auto_mixed_precision_onednn_bfloat16`. See example usage
[here](https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-automixedprecisionmkl.html).
[here](https://www.
.com/content/www/us/en/developer/articles/guide/getting-started-with-automixedprecisionmkl.html).
* **aarch64 CPUs:** Experimental performance optimizations from
[Compute Library for the Arm® Architecture (ACL)](https://github.com/ARM-software/ComputeLibrary)
are available through oneDNN in the default Linux aarch64 package (`pip
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录