downloader_test.go 34.6 KB
Newer Older
1 2 3
package downloader

import (
4
	"crypto/rand"
5
	"errors"
6
	"fmt"
7
	"math/big"
8
	"sync/atomic"
9 10 11 12
	"testing"
	"time"

	"github.com/ethereum/go-ethereum/common"
13
	"github.com/ethereum/go-ethereum/core"
14
	"github.com/ethereum/go-ethereum/core/types"
15
	"github.com/ethereum/go-ethereum/ethdb"
O
obscuren 已提交
16
	"github.com/ethereum/go-ethereum/event"
17 18
)

19
var (
20 21
	testdb, _ = ethdb.NewMemDatabase()
	genesis   = core.GenesisBlockForTesting(testdb, common.Address{}, big.NewInt(0))
22
)
23

24
// makeChain creates a chain of n blocks starting at but not including
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// parent. the returned hash chain is ordered head->parent.
func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) {
	blocks := core.GenerateChain(parent, testdb, n, func(i int, gen *core.BlockGen) {
		gen.SetCoinbase(common.Address{seed})
	})
	hashes := make([]common.Hash, n+1)
	hashes[len(hashes)-1] = parent.Hash()
	blockm := make(map[common.Hash]*types.Block, n+1)
	blockm[parent.Hash()] = parent
	for i, b := range blocks {
		hashes[len(hashes)-i-2] = b.Hash()
		blockm[b.Hash()] = b
	}
	return hashes, blockm
}

// makeChainFork creates two chains of length n, such that h1[:f] and
// h2[:f] are different but have a common suffix of length n-f.
func makeChainFork(n, f int, parent *types.Block) (h1, h2 []common.Hash, b1, b2 map[common.Hash]*types.Block) {
	// Create the common suffix.
45
	h, b := makeChain(n-f, 0, parent)
46 47 48 49 50 51 52 53 54 55
	// Create the forks.
	h1, b1 = makeChain(f, 1, b[h[0]])
	h1 = append(h1, h[1:]...)
	h2, b2 = makeChain(f, 2, b[h[0]])
	h2 = append(h2, h[1:]...)
	for hash, block := range b {
		b1[hash] = block
		b2[hash] = block
	}
	return h1, h2, b1, b2
56 57
}

58
// downloadTester is a test simulator for mocking out local block chain.
59
type downloadTester struct {
60 61
	downloader *Downloader

62 63 64 65
	ownHashes  []common.Hash                           // Hash chain belonging to the tester
	ownBlocks  map[common.Hash]*types.Block            // Blocks belonging to the tester
	peerHashes map[string][]common.Hash                // Hash chain belonging to different test peers
	peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers
66

67
	maxHashFetch int // Overrides the maximum number of retrieved hashes
68 69
}

70
// newTester creates a new downloader test mocker.
71
func newTester() *downloadTester {
72
	tester := &downloadTester{
73 74
		ownHashes:  []common.Hash{genesis.Hash()},
		ownBlocks:  map[common.Hash]*types.Block{genesis.Hash(): genesis},
75 76
		peerHashes: make(map[string][]common.Hash),
		peerBlocks: make(map[string]map[common.Hash]*types.Block),
77
	}
78
	tester.downloader = New(new(event.TypeMux), tester.hasBlock, tester.getBlock, tester.headBlock, tester.insertChain, tester.dropPeer)
79 80 81 82

	return tester
}

83 84
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string) error {
85
	err := dl.downloader.synchronise(id, dl.peerHashes[id][0])
86 87 88 89 90 91 92
	for {
		// If the queue is empty and processing stopped, break
		hashes, blocks := dl.downloader.queue.Size()
		if hashes+blocks == 0 && atomic.LoadInt32(&dl.downloader.processing) == 0 {
			break
		}
		// Otherwise sleep a bit and retry
93 94 95
		time.Sleep(time.Millisecond)
	}
	return err
O
obscuren 已提交
96 97
}

98
// hasBlock checks if a block is pres	ent in the testers canonical chain.
99
func (dl *downloadTester) hasBlock(hash common.Hash) bool {
100
	return dl.getBlock(hash) != nil
101 102
}

103
// getBlock retrieves a block from the testers canonical chain.
104
func (dl *downloadTester) getBlock(hash common.Hash) *types.Block {
105 106 107
	return dl.ownBlocks[hash]
}

108 109 110 111 112
// headBlock retrieves the current head block from the canonical chain.
func (dl *downloadTester) headBlock() *types.Block {
	return dl.getBlock(dl.ownHashes[len(dl.ownHashes)-1])
}

113 114 115 116 117 118 119 120 121 122 123 124
// insertChain injects a new batch of blocks into the simulated chain.
func (dl *downloadTester) insertChain(blocks types.Blocks) (int, error) {
	for i, block := range blocks {
		if _, ok := dl.ownBlocks[block.ParentHash()]; !ok {
			return i, errors.New("unknown parent")
		}
		dl.ownHashes = append(dl.ownHashes, block.Hash())
		dl.ownBlocks[block.Hash()] = block
	}
	return len(blocks), nil
}

125
// newPeer registers a new block download source into the downloader.
126 127
func (dl *downloadTester) newPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block) error {
	return dl.newSlowPeer(id, version, hashes, blocks, 0)
128 129 130 131 132
}

// newSlowPeer registers a new block download source into the downloader, with a
// specific delay time on processing the network packets sent to it, simulating
// potentially slow network IO.
133
func (dl *downloadTester) newSlowPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block, delay time.Duration) error {
134
	err := dl.downloader.RegisterPeer(id, version, hashes[0], dl.peerGetRelHashesFn(id, delay), dl.peerGetAbsHashesFn(id, version, delay), dl.peerGetBlocksFn(id, delay))
135
	if err == nil {
136 137 138 139 140
		// Assign the owned hashes and blocks to the peer (deep copy)
		dl.peerHashes[id] = make([]common.Hash, len(hashes))
		copy(dl.peerHashes[id], hashes)
		dl.peerBlocks[id] = make(map[common.Hash]*types.Block)
		for hash, block := range blocks {
141
			dl.peerBlocks[id][hash] = block
142
		}
143 144
	}
	return err
145 146
}

147 148 149 150 151 152 153 154
// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
	delete(dl.peerHashes, id)
	delete(dl.peerBlocks, id)

	dl.downloader.UnregisterPeer(id)
}

155
// peerGetRelHashesFn constructs a GetHashes function associated with a specific
156 157
// peer in the download tester. The returned function can be used to retrieve
// batches of hashes from the particularly requested peer.
158
func (dl *downloadTester) peerGetRelHashesFn(id string, delay time.Duration) func(head common.Hash) error {
159
	return func(head common.Hash) error {
160 161
		time.Sleep(delay)

162 163 164 165 166 167 168 169 170
		limit := MaxHashFetch
		if dl.maxHashFetch > 0 {
			limit = dl.maxHashFetch
		}
		// Gather the next batch of hashes
		hashes := dl.peerHashes[id]
		result := make([]common.Hash, 0, limit)
		for i, hash := range hashes {
			if hash == head {
171
				i++
172 173 174 175 176
				for len(result) < cap(result) && i < len(hashes) {
					result = append(result, hashes[i])
					i++
				}
				break
177 178
			}
		}
179 180 181 182 183 184
		// Delay delivery a bit to allow attacks to unfold
		go func() {
			time.Sleep(time.Millisecond)
			dl.downloader.DeliverHashes(id, result)
		}()
		return nil
185
	}
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
// peerGetAbsHashesFn constructs a GetHashesFromNumber function associated with
// a particular peer in the download tester. The returned function can be used to
// retrieve batches of hashes from the particularly requested peer.
func (dl *downloadTester) peerGetAbsHashesFn(id string, version int, delay time.Duration) func(uint64, int) error {
	// If the simulated peer runs eth/60, this message is not supported
	if version == eth60 {
		return func(uint64, int) error { return nil }
	}
	// Otherwise create a method to request the blocks by number
	return func(head uint64, count int) error {
		time.Sleep(delay)

		limit := count
		if dl.maxHashFetch > 0 {
			limit = dl.maxHashFetch
		}
		// Gather the next batch of hashes
		hashes := dl.peerHashes[id]
		result := make([]common.Hash, 0, limit)
		for i := 0; i < limit && len(hashes)-int(head)-1-i >= 0; i++ {
			result = append(result, hashes[len(hashes)-int(head)-1-i])
		}
		// Delay delivery a bit to allow attacks to unfold
		go func() {
			time.Sleep(time.Millisecond)
			dl.downloader.DeliverHashes(id, result)
		}()
		return nil
	}
}

219 220 221
// peerGetBlocksFn constructs a getBlocks function associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of blocks from the particularly requested peer.
222
func (dl *downloadTester) peerGetBlocksFn(id string, delay time.Duration) func([]common.Hash) error {
223
	return func(hashes []common.Hash) error {
224
		time.Sleep(delay)
225 226
		blocks := dl.peerBlocks[id]
		result := make([]*types.Block, 0, len(hashes))
227
		for _, hash := range hashes {
228 229
			if block, ok := blocks[hash]; ok {
				result = append(result, block)
230
			}
231
		}
232
		go dl.downloader.DeliverBlocks(id, result)
233 234 235 236 237

		return nil
	}
}

238
// Tests that simple synchronization, without throttling from a good peer works.
239
func TestSynchronisation60(t *testing.T) {
240 241
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
242
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
243

244
	tester := newTester()
245
	tester.newPeer("peer", eth60, hashes, blocks)
246

247
	// Synchronise with the peer and make sure all blocks were retrieved
248
	if err := tester.sync("peer"); err != nil {
249
		t.Fatalf("failed to synchronise blocks: %v", err)
250
	}
251 252
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
253
	}
254
}
255

256 257 258 259 260 261 262 263
// Tests that simple synchronization against a canonical chain works correctly.
// In this test common ancestor lookup should be short circuited and not require
// binary searching.
func TestCanonicalSynchronisation(t *testing.T) {
	// Create a small enough block chain to download
	targetBlocks := blockCacheLimit - 15
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

264
	tester := newTester()
265
	tester.newPeer("peer", eth61, hashes, blocks)
266

267 268 269
	// Synchronise with the peer and make sure all blocks were retrieved
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
270
	}
271 272
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
273 274 275
	}
}

276 277 278 279 280
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling60(t *testing.T) {
	// Create a long block chain to download and the tester
	targetBlocks := 8 * blockCacheLimit
281
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
282

283
	tester := newTester()
284
	tester.newPeer("peer", eth60, hashes, blocks)
285

286 287 288 289 290 291
	// Wrap the importer to allow stepping
	done := make(chan int)
	tester.downloader.insertChain = func(blocks types.Blocks) (int, error) {
		n, err := tester.insertChain(blocks)
		done <- n
		return n, err
292
	}
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	// Start a synchronisation concurrently
	errc := make(chan error)
	go func() {
		errc <- tester.sync("peer")
	}()
	// Iteratively take some blocks, always checking the retrieval count
	for len(tester.ownBlocks) < targetBlocks+1 {
		// Wait a bit for sync to throttle itself
		var cached int
		for start := time.Now(); time.Since(start) < 3*time.Second; {
			time.Sleep(25 * time.Millisecond)

			cached = len(tester.downloader.queue.blockPool)
			if cached == blockCacheLimit || len(tester.ownBlocks)+cached == targetBlocks+1 {
				break
			}
		}
		// Make sure we filled up the cache, then exhaust it
		time.Sleep(25 * time.Millisecond) // give it a chance to screw up
		if cached != blockCacheLimit && len(tester.ownBlocks)+cached < targetBlocks+1 {
			t.Fatalf("block count mismatch: have %v, want %v", cached, blockCacheLimit)
		}
		<-done // finish previous blocking import
		for cached > maxBlockProcess {
			cached -= <-done
		}
		time.Sleep(25 * time.Millisecond) // yield to the insertion
320
	}
321 322 323 324 325 326 327 328
	<-done // finish the last blocking import

	// Check that we haven't pulled more blocks than available
	if len(tester.ownBlocks) > targetBlocks+1 {
		t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1)
	}
	if err := <-errc; err != nil {
		t.Fatalf("block synchronization failed: %v", err)
329
	}
330 331
}

332 333
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
334
func TestThrottling(t *testing.T) {
335 336
	// Create a long block chain to download and the tester
	targetBlocks := 8 * blockCacheLimit
337
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
338

339
	tester := newTester()
340
	tester.newPeer("peer", eth61, hashes, blocks)
341

342 343 344 345 346 347 348
	// Wrap the importer to allow stepping
	done := make(chan int)
	tester.downloader.insertChain = func(blocks types.Blocks) (int, error) {
		n, err := tester.insertChain(blocks)
		done <- n
		return n, err
	}
349 350 351
	// Start a synchronisation concurrently
	errc := make(chan error)
	go func() {
352
		errc <- tester.sync("peer")
353 354
	}()
	// Iteratively take some blocks, always checking the retrieval count
355 356 357
	for len(tester.ownBlocks) < targetBlocks+1 {
		// Wait a bit for sync to throttle itself
		var cached int
358 359
		for start := time.Now(); time.Since(start) < 3*time.Second; {
			time.Sleep(25 * time.Millisecond)
360 361 362

			cached = len(tester.downloader.queue.blockPool)
			if cached == blockCacheLimit || len(tester.ownBlocks)+cached == targetBlocks+1 {
363 364 365
				break
			}
		}
366 367 368 369
		// Make sure we filled up the cache, then exhaust it
		time.Sleep(25 * time.Millisecond) // give it a chance to screw up
		if cached != blockCacheLimit && len(tester.ownBlocks)+cached < targetBlocks+1 {
			t.Fatalf("block count mismatch: have %v, want %v", cached, blockCacheLimit)
370
		}
371 372 373
		<-done // finish previous blocking import
		for cached > maxBlockProcess {
			cached -= <-done
374
		}
375 376 377 378 379 380 381
		time.Sleep(25 * time.Millisecond) // yield to the insertion
	}
	<-done // finish the last blocking import

	// Check that we haven't pulled more blocks than available
	if len(tester.ownBlocks) > targetBlocks+1 {
		t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1)
382
	}
383 384
	if err := <-errc; err != nil {
		t.Fatalf("block synchronization failed: %v", err)
385 386
	}
}
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSynchronisation(t *testing.T) {
	// Create a long enough forked chain
	common, fork := MaxHashFetch, 2*MaxHashFetch
	hashesA, hashesB, blocksA, blocksB := makeChainFork(common+fork, fork, genesis)

	tester := newTester()
	tester.newPeer("fork A", eth61, hashesA, blocksA)
	tester.newPeer("fork B", eth61, hashesB, blocksB)

	// Synchronise with the peer and make sure all blocks were retrieved
	if err := tester.sync("fork A"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != common+fork+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+fork+1)
	}
	// Synchronise with the second peer and make sure that fork is pulled too
	if err := tester.sync("fork B"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != common+2*fork+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+2*fork+1)
	}
}

// Tests that an inactive downloader will not accept incoming hashes and blocks.
func TestInactiveDownloader(t *testing.T) {
	tester := newTester()

	// Check that neither hashes nor blocks are accepted
	if err := tester.downloader.DeliverHashes("bad peer", []common.Hash{}); err != errNoSyncActive {
		t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
	}
	if err := tester.downloader.DeliverBlocks("bad peer", []*types.Block{}); err != errNoSyncActive {
		t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
	}
}

// Tests that a canceled download wipes all previously accumulated state.
func TestCancel60(t *testing.T) {
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

	tester := newTester()
	tester.newPeer("peer", eth60, hashes, blocks)

	// Make sure canceling works with a pristine downloader
	tester.downloader.cancel()
	hashCount, blockCount := tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
	// Synchronise with the peer, but cancel afterwards
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	tester.downloader.cancel()
	hashCount, blockCount = tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
}

// Tests that a canceled download wipes all previously accumulated state.
func TestCancel(t *testing.T) {
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
	if targetBlocks >= MaxHashFetch {
		targetBlocks = MaxHashFetch - 15
	}
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

	tester := newTester()
	tester.newPeer("peer", eth61, hashes, blocks)

	// Make sure canceling works with a pristine downloader
	tester.downloader.cancel()
	hashCount, blockCount := tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
	// Synchronise with the peer, but cancel afterwards
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	tester.downloader.cancel()
	hashCount, blockCount = tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
}

484 485 486 487 488
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation(t *testing.T) {
	// Create various peers with various parts of the chain
	targetPeers := 16
	targetBlocks := targetPeers*blockCacheLimit - 15
489
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
490 491 492 493

	tester := newTester()
	for i := 0; i < targetPeers; i++ {
		id := fmt.Sprintf("peer #%d", i)
494
		tester.newPeer(id, eth60, hashes[i*blockCacheLimit:], blocks)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	}
	// Synchronise with the middle peer and make sure half of the blocks were retrieved
	id := fmt.Sprintf("peer #%d", targetPeers/2)
	if err := tester.sync(id); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != len(tester.peerHashes[id]) {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(tester.peerHashes[id]))
	}
	// Synchronise with the best peer and make sure everything is retrieved
	if err := tester.sync("peer #0"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
	}
}

513 514 515 516 517 518 519 520
// Tests that synchronising with a peer who's very slow at network IO does not
// stall the other peers in the system.
func TestSlowSynchronisation(t *testing.T) {
	tester := newTester()

	// Create a batch of blocks, with a slow and a full speed peer
	targetCycles := 2
	targetBlocks := targetCycles*blockCacheLimit - 15
521
	targetIODelay := time.Second
522
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
523

524 525
	tester.newSlowPeer("fast", eth60, hashes, blocks, 0)
	tester.newSlowPeer("slow", eth60, hashes, blocks, targetIODelay)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	// Try to sync with the peers (pull hashes from fast)
	start := time.Now()
	if err := tester.sync("fast"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
	}
	// Check that the slow peer got hit at most once per block-cache-size import
	limit := time.Duration(targetCycles+1) * targetIODelay
	if delay := time.Since(start); delay >= limit {
		t.Fatalf("synchronisation exceeded delay limit: have %v, want %v", delay, limit)
	}
}

542 543 544
// Tests that if a peer returns an invalid chain with a block pointing to a non-
// existing parent, it is correctly detected and handled.
func TestNonExistingParentAttack(t *testing.T) {
545 546
	tester := newTester()

547
	// Forge a single-link chain with a forged header
548
	hashes, blocks := makeChain(1, 0, genesis)
549
	tester.newPeer("valid", eth60, hashes, blocks)
550

551 552 553
	wrongblock := types.NewBlock(&types.Header{}, nil, nil, nil)
	wrongblock.Td = blocks[hashes[0]].Td
	hashes, blocks = makeChain(1, 0, wrongblock)
554
	tester.newPeer("attack", eth60, hashes, blocks)
555 556

	// Try and sync with the malicious node and check that it fails
557 558
	if err := tester.sync("attack"); err == nil {
		t.Fatalf("block synchronization succeeded")
559
	}
560 561
	if tester.hasBlock(hashes[0]) {
		t.Fatalf("tester accepted unknown-parent block: %v", blocks[hashes[0]])
562
	}
563 564
	// Try to synchronize with the valid chain and make sure it succeeds
	if err := tester.sync("valid"); err != nil {
565 566
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
567 568
	if !tester.hasBlock(tester.peerHashes["valid"][0]) {
		t.Fatalf("tester didn't accept known-parent block: %v", tester.peerBlocks["valid"][hashes[0]])
569
	}
570
}
571 572 573

// Tests that if a malicious peers keeps sending us repeating hashes, we don't
// loop indefinitely.
574 575 576
func TestRepeatingHashAttack(t *testing.T) { // TODO: Is this thing valid??
	tester := newTester()

577
	// Create a valid chain, but drop the last link
578
	hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
579 580
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, hashes[:len(hashes)-1], blocks)
581 582 583 584

	// Try and sync with the malicious node
	errc := make(chan error)
	go func() {
585
		errc <- tester.sync("attack")
586 587 588
	}()
	// Make sure that syncing returns and does so with a failure
	select {
589
	case <-time.After(time.Second):
590 591 592 593 594 595
		t.Fatalf("synchronisation blocked")
	case err := <-errc:
		if err == nil {
			t.Fatalf("synchronisation succeeded")
		}
	}
596
	// Ensure that a valid chain can still pass sync
597
	if err := tester.sync("valid"); err != nil {
598 599
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
600
}
601 602 603 604

// Tests that if a malicious peers returns a non-existent block hash, it should
// eventually time out and the sync reattempted.
func TestNonExistingBlockAttack(t *testing.T) {
605 606
	tester := newTester()

607
	// Create a valid chain, but forge the last link
608
	hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
609
	tester.newPeer("valid", eth60, hashes, blocks)
610

611
	hashes[len(hashes)/2] = common.Hash{}
612
	tester.newPeer("attack", eth60, hashes, blocks)
613 614

	// Try and sync with the malicious node and check that it fails
615
	if err := tester.sync("attack"); err != errPeersUnavailable {
616 617
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errPeersUnavailable)
	}
618
	// Ensure that a valid chain can still pass sync
619
	if err := tester.sync("valid"); err != nil {
620 621
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
622
}
623 624 625 626

// Tests that if a malicious peer is returning hashes in a weird order, that the
// sync throttler doesn't choke on them waiting for the valid blocks.
func TestInvalidHashOrderAttack(t *testing.T) {
627 628
	tester := newTester()

629
	// Create a valid long chain, but reverse some hashes within
630
	hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)
631
	tester.newPeer("valid", eth60, hashes, blocks)
632

633 634 635 636 637
	chunk1 := make([]common.Hash, blockCacheLimit)
	chunk2 := make([]common.Hash, blockCacheLimit)
	copy(chunk1, hashes[blockCacheLimit:2*blockCacheLimit])
	copy(chunk2, hashes[2*blockCacheLimit:3*blockCacheLimit])

638 639
	copy(hashes[2*blockCacheLimit:], chunk1)
	copy(hashes[blockCacheLimit:], chunk2)
640
	tester.newPeer("attack", eth60, hashes, blocks)
641 642

	// Try and sync with the malicious node and check that it fails
643
	if err := tester.sync("attack"); err != errInvalidChain {
644
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
645 646
	}
	// Ensure that a valid chain can still pass sync
647
	if err := tester.sync("valid"); err != nil {
648 649 650
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
}
651 652 653 654

// Tests that if a malicious peer makes up a random hash chain and tries to push
// indefinitely, it actually gets caught with it.
func TestMadeupHashChainAttack(t *testing.T) {
655
	tester := newTester()
656
	blockSoftTTL = 100 * time.Millisecond
657 658 659
	crossCheckCycle = 25 * time.Millisecond

	// Create a long chain of hashes without backing blocks
660 661 662 663 664 665
	hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)

	randomHashes := make([]common.Hash, 1024*blockCacheLimit)
	for i := range randomHashes {
		rand.Read(randomHashes[i][:])
	}
666

667 668
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, randomHashes, nil)
669 670

	// Try and sync with the malicious node and check that it fails
671
	if err := tester.sync("attack"); err != errCrossCheckFailed {
672
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
673
	}
674
	// Ensure that a valid chain can still pass sync
675
	if err := tester.sync("valid"); err != nil {
676 677
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
678
}
679

680 681 682 683 684 685
// Tests that if a malicious peer makes up a random hash chain, and tries to push
// indefinitely, one hash at a time, it actually gets caught with it. The reason
// this is separate from the classical made up chain attack is that sending hashes
// one by one prevents reliable block/parent verification.
func TestMadeupHashChainDrippingAttack(t *testing.T) {
	// Create a random chain of hashes to drip
686 687 688 689 690
	randomHashes := make([]common.Hash, 16*blockCacheLimit)
	for i := range randomHashes {
		rand.Read(randomHashes[i][:])
	}
	randomHashes[len(randomHashes)-1] = genesis.Hash()
691
	tester := newTester()
692 693 694

	// Try and sync with the attacker, one hash at a time
	tester.maxHashFetch = 1
695
	tester.newPeer("attack", eth60, randomHashes, nil)
696
	if err := tester.sync("attack"); err != errStallingPeer {
697
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
698 699 700
	}
}

701 702 703
// Tests that if a malicious peer makes up a random block chain, and tried to
// push indefinitely, it actually gets caught with it.
func TestMadeupBlockChainAttack(t *testing.T) {
704
	defaultBlockTTL := blockSoftTTL
705 706
	defaultCrossCheckCycle := crossCheckCycle

707
	blockSoftTTL = 100 * time.Millisecond
708 709 710
	crossCheckCycle = 25 * time.Millisecond

	// Create a long chain of blocks and simulate an invalid chain by dropping every second
711
	hashes, blocks := makeChain(16*blockCacheLimit, 0, genesis)
712 713 714 715 716
	gapped := make([]common.Hash, len(hashes)/2)
	for i := 0; i < len(gapped); i++ {
		gapped[i] = hashes[2*i]
	}
	// Try and sync with the malicious node and check that it fails
717
	tester := newTester()
718
	tester.newPeer("attack", eth60, gapped, blocks)
719
	if err := tester.sync("attack"); err != errCrossCheckFailed {
720
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
721 722
	}
	// Ensure that a valid chain can still pass sync
723
	blockSoftTTL = defaultBlockTTL
724 725
	crossCheckCycle = defaultCrossCheckCycle

726
	tester.newPeer("valid", eth60, hashes, blocks)
727
	if err := tester.sync("valid"); err != nil {
728 729 730
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
}
731

732
// Tests that if one/multiple malicious peers try to feed a banned blockchain to
733
// the downloader, it will not keep refetching the same chain indefinitely, but
734
// gradually block pieces of it, until its head is also blocked.
735
func TestBannedChainStarvationAttack(t *testing.T) {
736 737 738
	n := 8 * blockCacheLimit
	fork := n/2 - 23
	hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)
739

740 741 742
	// Create the tester and ban the selected hash.
	tester := newTester()
	tester.downloader.banned.Add(forkHashes[fork-1])
743 744
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, forkHashes, forkBlocks)
745

746 747 748 749
	// Iteratively try to sync, and verify that the banned hash list grows until
	// the head of the invalid chain is blocked too.
	for banned := tester.downloader.banned.Size(); ; {
		// Try to sync with the attacker, check hash chain failure
750
		if err := tester.sync("attack"); err != errInvalidChain {
751
			if tester.downloader.banned.Has(forkHashes[0]) && err == errBannedHead {
752 753
				break
			}
754
			t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
755 756 757 758 759 760 761 762
		}
		// Check that the ban list grew with at least 1 new item, or all banned
		bans := tester.downloader.banned.Size()
		if bans < banned+1 {
			t.Fatalf("ban count mismatch: have %v, want %v+", bans, banned+1)
		}
		banned = bans
	}
763
	// Check that after banning an entire chain, bad peers get dropped
764
	if err := tester.newPeer("new attacker", eth60, forkHashes, forkBlocks); err != errBannedHead {
765 766
		t.Fatalf("peer registration mismatch: have %v, want %v", err, errBannedHead)
	}
767
	if peer := tester.downloader.peers.Peer("new attacker"); peer != nil {
768 769
		t.Fatalf("banned attacker registered: %v", peer)
	}
770
	// Ensure that a valid chain can still pass sync
771
	if err := tester.sync("valid"); err != nil {
772 773
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
774
}
775 776 777 778 779

// Tests that if a peer sends excessively many/large invalid chains that are
// gradually banned, it will have an upper limit on the consumed memory and also
// the origin bad hashes will not be evacuated.
func TestBannedChainMemoryExhaustionAttack(t *testing.T) {
780 781 782 783 784 785
	// Construct a banned chain with more chunks than the ban limit
	n := 8 * blockCacheLimit
	fork := n/2 - 23
	hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)

	// Create the tester and ban the root hash of the fork.
786
	tester := newTester()
787
	tester.downloader.banned.Add(forkHashes[fork-1])
788

789
	// Reduce the test size a bit
790 791 792
	defaultMaxBlockFetch := MaxBlockFetch
	defaultMaxBannedHashes := maxBannedHashes

793 794 795
	MaxBlockFetch = 4
	maxBannedHashes = 256

796 797
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, forkHashes, forkBlocks)
798 799 800 801 802

	// Iteratively try to sync, and verify that the banned hash list grows until
	// the head of the invalid chain is blocked too.
	for {
		// Try to sync with the attacker, check hash chain failure
803
		if err := tester.sync("attack"); err != errInvalidChain {
804
			t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
805
		}
806 807
		// Short circuit if the entire chain was banned.
		if tester.downloader.banned.Has(forkHashes[0]) {
808 809 810 811 812 813 814 815 816 817 818 819
			break
		}
		// Otherwise ensure we never exceed the memory allowance and the hard coded bans are untouched
		if bans := tester.downloader.banned.Size(); bans > maxBannedHashes {
			t.Fatalf("ban cap exceeded: have %v, want max %v", bans, maxBannedHashes)
		}
		for hash, _ := range core.BadHashes {
			if !tester.downloader.banned.Has(hash) {
				t.Fatalf("hard coded ban evacuated: %x", hash)
			}
		}
	}
820 821 822 823
	// Ensure that a valid chain can still pass sync
	MaxBlockFetch = defaultMaxBlockFetch
	maxBannedHashes = defaultMaxBannedHashes

824
	if err := tester.sync("valid"); err != nil {
825 826
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
827
}
828

829 830 831 832 833 834 835 836 837
// Tests a corner case (potential attack) where a peer delivers both good as well
// as unrequested blocks to a hash request. This may trigger a different code
// path than the fully correct or fully invalid delivery, potentially causing
// internal state problems
//
// No, don't delete this test, it actually did happen!
func TestOverlappingDeliveryAttack(t *testing.T) {
	// Create an arbitrary batch of blocks ( < cache-size not to block)
	targetBlocks := blockCacheLimit - 23
838
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
839 840 841

	// Register an attacker that always returns non-requested blocks too
	tester := newTester()
842
	tester.newPeer("attack", eth60, hashes, blocks)
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

	rawGetBlocks := tester.downloader.peers.Peer("attack").getBlocks
	tester.downloader.peers.Peer("attack").getBlocks = func(request []common.Hash) error {
		// Add a non requested hash the screw the delivery (genesis should be fine)
		return rawGetBlocks(append(request, hashes[0]))
	}
	// Test that synchronisation can complete, check for import success
	if err := tester.sync("attack"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	start := time.Now()
	for len(tester.ownHashes) != len(hashes) && time.Since(start) < time.Second {
		time.Sleep(50 * time.Millisecond)
	}
	if len(tester.ownHashes) != len(hashes) {
		t.Fatalf("chain length mismatch: have %v, want %v", len(tester.ownHashes), len(hashes))
	}
}

862
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
863 864
func TestHashAttackerDropping(t *testing.T) {
	// Define the disconnection requirement for individual hash fetch errors
865 866 867 868
	tests := []struct {
		result error
		drop   bool
	}{
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		{nil, false},                 // Sync succeeded, all is well
		{errBusy, false},             // Sync is already in progress, no problem
		{errUnknownPeer, false},      // Peer is unknown, was already dropped, don't double drop
		{errBadPeer, true},           // Peer was deemed bad for some reason, drop it
		{errStallingPeer, true},      // Peer was detected to be stalling, drop it
		{errBannedHead, true},        // Peer's head hash is a known bad hash, drop it
		{errNoPeers, false},          // No peers to download from, soft race, no issue
		{errPendingQueue, false},     // There are blocks still cached, wait to exhaust, no issue
		{errTimeout, true},           // No hashes received in due time, drop the peer
		{errEmptyHashSet, true},      // No hashes were returned as a response, drop as it's a dead end
		{errPeersUnavailable, true},  // Nobody had the advertised blocks, drop the advertiser
		{errInvalidChain, true},      // Hash chain was detected as invalid, definitely drop
		{errCrossCheckFailed, true},  // Hash-origin failed to pass a block cross check, drop
		{errCancelHashFetch, false},  // Synchronisation was canceled, origin may be innocent, don't drop
		{errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop
884 885 886 887 888 889
	}
	// Run the tests and check disconnection status
	tester := newTester()
	for i, tt := range tests {
		// Register a new peer and ensure it's presence
		id := fmt.Sprintf("test %d", i)
890
		if err := tester.newPeer(id, eth60, []common.Hash{genesis.Hash()}, nil); err != nil {
891 892 893 894 895 896 897 898
			t.Fatalf("test %d: failed to register new peer: %v", i, err)
		}
		if _, ok := tester.peerHashes[id]; !ok {
			t.Fatalf("test %d: registered peer not found", i)
		}
		// Simulate a synchronisation and check the required result
		tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }

899
		tester.downloader.Synchronise(id, genesis.Hash())
900 901 902 903 904
		if _, ok := tester.peerHashes[id]; !ok != tt.drop {
			t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
		}
	}
}
905 906 907 908 909 910 911

// Tests that feeding bad blocks will result in a peer drop.
func TestBlockAttackerDropping(t *testing.T) {
	// Define the disconnection requirement for individual block import errors
	tests := []struct {
		failure bool
		drop    bool
912 913 914 915
	}{
		{true, true},
		{false, false},
	}
916 917 918 919 920 921

	// Run the tests and check disconnection status
	tester := newTester()
	for i, tt := range tests {
		// Register a new peer and ensure it's presence
		id := fmt.Sprintf("test %d", i)
922
		if err := tester.newPeer(id, eth60, []common.Hash{common.Hash{}}, nil); err != nil {
923 924 925 926 927 928
			t.Fatalf("test %d: failed to register new peer: %v", i, err)
		}
		if _, ok := tester.peerHashes[id]; !ok {
			t.Fatalf("test %d: registered peer not found", i)
		}
		// Assemble a good or bad block, depending of the test
929
		raw := core.GenerateChain(genesis, testdb, 1, nil)[0]
930
		if tt.failure {
931 932
			parent := types.NewBlock(&types.Header{}, nil, nil, nil)
			raw = core.GenerateChain(parent, testdb, 1, nil)[0]
933 934 935 936 937 938 939 940 941 942 943
		}
		block := &Block{OriginPeer: id, RawBlock: raw}

		// Simulate block processing and check the result
		tester.downloader.queue.blockCache[0] = block
		tester.downloader.process()
		if _, ok := tester.peerHashes[id]; !ok != tt.drop {
			t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.failure, !ok, tt.drop)
		}
	}
}