downloader_test.go 34.5 KB
Newer Older
1 2 3
package downloader

import (
4
	"crypto/rand"
5
	"errors"
6
	"fmt"
7
	"math/big"
8
	"sync/atomic"
9 10 11 12
	"testing"
	"time"

	"github.com/ethereum/go-ethereum/common"
13
	"github.com/ethereum/go-ethereum/core"
14
	"github.com/ethereum/go-ethereum/core/types"
15
	"github.com/ethereum/go-ethereum/ethdb"
O
obscuren 已提交
16
	"github.com/ethereum/go-ethereum/event"
17 18
)

19
var (
20 21
	testdb, _ = ethdb.NewMemDatabase()
	genesis   = core.GenesisBlockForTesting(testdb, common.Address{}, big.NewInt(0))
22
)
23

24
// makeChain creates a chain of n blocks starting at but not including
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// parent. the returned hash chain is ordered head->parent.
func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) {
	blocks := core.GenerateChain(parent, testdb, n, func(i int, gen *core.BlockGen) {
		gen.SetCoinbase(common.Address{seed})
	})
	hashes := make([]common.Hash, n+1)
	hashes[len(hashes)-1] = parent.Hash()
	blockm := make(map[common.Hash]*types.Block, n+1)
	blockm[parent.Hash()] = parent
	for i, b := range blocks {
		hashes[len(hashes)-i-2] = b.Hash()
		blockm[b.Hash()] = b
	}
	return hashes, blockm
}

// makeChainFork creates two chains of length n, such that h1[:f] and
// h2[:f] are different but have a common suffix of length n-f.
func makeChainFork(n, f int, parent *types.Block) (h1, h2 []common.Hash, b1, b2 map[common.Hash]*types.Block) {
	// Create the common suffix.
45
	h, b := makeChain(n-f, 0, parent)
46 47 48 49 50 51 52 53 54 55
	// Create the forks.
	h1, b1 = makeChain(f, 1, b[h[0]])
	h1 = append(h1, h[1:]...)
	h2, b2 = makeChain(f, 2, b[h[0]])
	h2 = append(h2, h[1:]...)
	for hash, block := range b {
		b1[hash] = block
		b2[hash] = block
	}
	return h1, h2, b1, b2
56 57
}

58
// downloadTester is a test simulator for mocking out local block chain.
59
type downloadTester struct {
60 61
	downloader *Downloader

62 63 64 65
	ownHashes  []common.Hash                           // Hash chain belonging to the tester
	ownBlocks  map[common.Hash]*types.Block            // Blocks belonging to the tester
	peerHashes map[string][]common.Hash                // Hash chain belonging to different test peers
	peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers
66

67
	maxHashFetch int // Overrides the maximum number of retrieved hashes
68 69
}

70
// newTester creates a new downloader test mocker.
71
func newTester() *downloadTester {
72
	tester := &downloadTester{
73 74
		ownHashes:  []common.Hash{genesis.Hash()},
		ownBlocks:  map[common.Hash]*types.Block{genesis.Hash(): genesis},
75 76
		peerHashes: make(map[string][]common.Hash),
		peerBlocks: make(map[string]map[common.Hash]*types.Block),
77
	}
78
	tester.downloader = New(new(event.TypeMux), tester.hasBlock, tester.getBlock, tester.headBlock, tester.insertChain, tester.dropPeer)
79 80 81 82

	return tester
}

83 84
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string) error {
85 86 87 88 89
	err := dl.downloader.synchronise(id, dl.peerHashes[id][0])
	for atomic.LoadInt32(&dl.downloader.processing) == 1 {
		time.Sleep(time.Millisecond)
	}
	return err
O
obscuren 已提交
90 91
}

92
// hasBlock checks if a block is pres	ent in the testers canonical chain.
93
func (dl *downloadTester) hasBlock(hash common.Hash) bool {
94
	return dl.getBlock(hash) != nil
95 96
}

97
// getBlock retrieves a block from the testers canonical chain.
98
func (dl *downloadTester) getBlock(hash common.Hash) *types.Block {
99 100 101
	return dl.ownBlocks[hash]
}

102 103 104 105 106
// headBlock retrieves the current head block from the canonical chain.
func (dl *downloadTester) headBlock() *types.Block {
	return dl.getBlock(dl.ownHashes[len(dl.ownHashes)-1])
}

107 108 109 110 111 112 113 114 115 116 117 118
// insertChain injects a new batch of blocks into the simulated chain.
func (dl *downloadTester) insertChain(blocks types.Blocks) (int, error) {
	for i, block := range blocks {
		if _, ok := dl.ownBlocks[block.ParentHash()]; !ok {
			return i, errors.New("unknown parent")
		}
		dl.ownHashes = append(dl.ownHashes, block.Hash())
		dl.ownBlocks[block.Hash()] = block
	}
	return len(blocks), nil
}

119
// newPeer registers a new block download source into the downloader.
120 121
func (dl *downloadTester) newPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block) error {
	return dl.newSlowPeer(id, version, hashes, blocks, 0)
122 123 124 125 126
}

// newSlowPeer registers a new block download source into the downloader, with a
// specific delay time on processing the network packets sent to it, simulating
// potentially slow network IO.
127
func (dl *downloadTester) newSlowPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block, delay time.Duration) error {
128
	err := dl.downloader.RegisterPeer(id, version, hashes[0], dl.peerGetRelHashesFn(id, delay), dl.peerGetAbsHashesFn(id, version, delay), dl.peerGetBlocksFn(id, delay))
129
	if err == nil {
130 131 132 133 134
		// Assign the owned hashes and blocks to the peer (deep copy)
		dl.peerHashes[id] = make([]common.Hash, len(hashes))
		copy(dl.peerHashes[id], hashes)
		dl.peerBlocks[id] = make(map[common.Hash]*types.Block)
		for hash, block := range blocks {
135
			dl.peerBlocks[id][hash] = block
136
		}
137 138
	}
	return err
139 140
}

141 142 143 144 145 146 147 148
// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
	delete(dl.peerHashes, id)
	delete(dl.peerBlocks, id)

	dl.downloader.UnregisterPeer(id)
}

149
// peerGetRelHashesFn constructs a GetHashes function associated with a specific
150 151
// peer in the download tester. The returned function can be used to retrieve
// batches of hashes from the particularly requested peer.
152
func (dl *downloadTester) peerGetRelHashesFn(id string, delay time.Duration) func(head common.Hash) error {
153
	return func(head common.Hash) error {
154 155
		time.Sleep(delay)

156 157 158 159 160 161 162 163 164
		limit := MaxHashFetch
		if dl.maxHashFetch > 0 {
			limit = dl.maxHashFetch
		}
		// Gather the next batch of hashes
		hashes := dl.peerHashes[id]
		result := make([]common.Hash, 0, limit)
		for i, hash := range hashes {
			if hash == head {
165
				i++
166 167 168 169 170
				for len(result) < cap(result) && i < len(hashes) {
					result = append(result, hashes[i])
					i++
				}
				break
171 172
			}
		}
173 174 175 176 177 178
		// Delay delivery a bit to allow attacks to unfold
		go func() {
			time.Sleep(time.Millisecond)
			dl.downloader.DeliverHashes(id, result)
		}()
		return nil
179
	}
180 181
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
// peerGetAbsHashesFn constructs a GetHashesFromNumber function associated with
// a particular peer in the download tester. The returned function can be used to
// retrieve batches of hashes from the particularly requested peer.
func (dl *downloadTester) peerGetAbsHashesFn(id string, version int, delay time.Duration) func(uint64, int) error {
	// If the simulated peer runs eth/60, this message is not supported
	if version == eth60 {
		return func(uint64, int) error { return nil }
	}
	// Otherwise create a method to request the blocks by number
	return func(head uint64, count int) error {
		time.Sleep(delay)

		limit := count
		if dl.maxHashFetch > 0 {
			limit = dl.maxHashFetch
		}
		// Gather the next batch of hashes
		hashes := dl.peerHashes[id]
		result := make([]common.Hash, 0, limit)
		for i := 0; i < limit && len(hashes)-int(head)-1-i >= 0; i++ {
			result = append(result, hashes[len(hashes)-int(head)-1-i])
		}
		// Delay delivery a bit to allow attacks to unfold
		go func() {
			time.Sleep(time.Millisecond)
			dl.downloader.DeliverHashes(id, result)
		}()
		return nil
	}
}

213 214 215
// peerGetBlocksFn constructs a getBlocks function associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of blocks from the particularly requested peer.
216
func (dl *downloadTester) peerGetBlocksFn(id string, delay time.Duration) func([]common.Hash) error {
217
	return func(hashes []common.Hash) error {
218
		time.Sleep(delay)
219 220
		blocks := dl.peerBlocks[id]
		result := make([]*types.Block, 0, len(hashes))
221
		for _, hash := range hashes {
222 223
			if block, ok := blocks[hash]; ok {
				result = append(result, block)
224
			}
225
		}
226
		go dl.downloader.DeliverBlocks(id, result)
227 228 229 230 231

		return nil
	}
}

232
// Tests that simple synchronization, without throttling from a good peer works.
233
func TestSynchronisation60(t *testing.T) {
234 235
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
236
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
237

238
	tester := newTester()
239
	tester.newPeer("peer", eth60, hashes, blocks)
240

241
	// Synchronise with the peer and make sure all blocks were retrieved
242
	if err := tester.sync("peer"); err != nil {
243
		t.Fatalf("failed to synchronise blocks: %v", err)
244
	}
245 246
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
247
	}
248
}
249

250 251 252 253 254 255 256 257
// Tests that simple synchronization against a canonical chain works correctly.
// In this test common ancestor lookup should be short circuited and not require
// binary searching.
func TestCanonicalSynchronisation(t *testing.T) {
	// Create a small enough block chain to download
	targetBlocks := blockCacheLimit - 15
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

258
	tester := newTester()
259
	tester.newPeer("peer", eth61, hashes, blocks)
260

261 262 263
	// Synchronise with the peer and make sure all blocks were retrieved
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
264
	}
265 266
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
267 268 269
	}
}

270 271 272 273 274
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling60(t *testing.T) {
	// Create a long block chain to download and the tester
	targetBlocks := 8 * blockCacheLimit
275
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
276

277
	tester := newTester()
278
	tester.newPeer("peer", eth60, hashes, blocks)
279

280 281 282 283 284 285
	// Wrap the importer to allow stepping
	done := make(chan int)
	tester.downloader.insertChain = func(blocks types.Blocks) (int, error) {
		n, err := tester.insertChain(blocks)
		done <- n
		return n, err
286
	}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	// Start a synchronisation concurrently
	errc := make(chan error)
	go func() {
		errc <- tester.sync("peer")
	}()
	// Iteratively take some blocks, always checking the retrieval count
	for len(tester.ownBlocks) < targetBlocks+1 {
		// Wait a bit for sync to throttle itself
		var cached int
		for start := time.Now(); time.Since(start) < 3*time.Second; {
			time.Sleep(25 * time.Millisecond)

			cached = len(tester.downloader.queue.blockPool)
			if cached == blockCacheLimit || len(tester.ownBlocks)+cached == targetBlocks+1 {
				break
			}
		}
		// Make sure we filled up the cache, then exhaust it
		time.Sleep(25 * time.Millisecond) // give it a chance to screw up
		if cached != blockCacheLimit && len(tester.ownBlocks)+cached < targetBlocks+1 {
			t.Fatalf("block count mismatch: have %v, want %v", cached, blockCacheLimit)
		}
		<-done // finish previous blocking import
		for cached > maxBlockProcess {
			cached -= <-done
		}
		time.Sleep(25 * time.Millisecond) // yield to the insertion
314
	}
315 316 317 318 319 320 321 322
	<-done // finish the last blocking import

	// Check that we haven't pulled more blocks than available
	if len(tester.ownBlocks) > targetBlocks+1 {
		t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1)
	}
	if err := <-errc; err != nil {
		t.Fatalf("block synchronization failed: %v", err)
323
	}
324 325
}

326 327
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
328
func TestThrottling(t *testing.T) {
329 330
	// Create a long block chain to download and the tester
	targetBlocks := 8 * blockCacheLimit
331
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
332

333
	tester := newTester()
334
	tester.newPeer("peer", eth61, hashes, blocks)
335

336 337 338 339 340 341 342
	// Wrap the importer to allow stepping
	done := make(chan int)
	tester.downloader.insertChain = func(blocks types.Blocks) (int, error) {
		n, err := tester.insertChain(blocks)
		done <- n
		return n, err
	}
343 344 345
	// Start a synchronisation concurrently
	errc := make(chan error)
	go func() {
346
		errc <- tester.sync("peer")
347 348
	}()
	// Iteratively take some blocks, always checking the retrieval count
349 350 351
	for len(tester.ownBlocks) < targetBlocks+1 {
		// Wait a bit for sync to throttle itself
		var cached int
352 353
		for start := time.Now(); time.Since(start) < 3*time.Second; {
			time.Sleep(25 * time.Millisecond)
354 355 356

			cached = len(tester.downloader.queue.blockPool)
			if cached == blockCacheLimit || len(tester.ownBlocks)+cached == targetBlocks+1 {
357 358 359
				break
			}
		}
360 361 362 363
		// Make sure we filled up the cache, then exhaust it
		time.Sleep(25 * time.Millisecond) // give it a chance to screw up
		if cached != blockCacheLimit && len(tester.ownBlocks)+cached < targetBlocks+1 {
			t.Fatalf("block count mismatch: have %v, want %v", cached, blockCacheLimit)
364
		}
365 366 367
		<-done // finish previous blocking import
		for cached > maxBlockProcess {
			cached -= <-done
368
		}
369 370 371 372 373 374 375
		time.Sleep(25 * time.Millisecond) // yield to the insertion
	}
	<-done // finish the last blocking import

	// Check that we haven't pulled more blocks than available
	if len(tester.ownBlocks) > targetBlocks+1 {
		t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1)
376
	}
377 378
	if err := <-errc; err != nil {
		t.Fatalf("block synchronization failed: %v", err)
379 380
	}
}
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSynchronisation(t *testing.T) {
	// Create a long enough forked chain
	common, fork := MaxHashFetch, 2*MaxHashFetch
	hashesA, hashesB, blocksA, blocksB := makeChainFork(common+fork, fork, genesis)

	tester := newTester()
	tester.newPeer("fork A", eth61, hashesA, blocksA)
	tester.newPeer("fork B", eth61, hashesB, blocksB)

	// Synchronise with the peer and make sure all blocks were retrieved
	if err := tester.sync("fork A"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != common+fork+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+fork+1)
	}
	// Synchronise with the second peer and make sure that fork is pulled too
	if err := tester.sync("fork B"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != common+2*fork+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+2*fork+1)
	}
}

// Tests that an inactive downloader will not accept incoming hashes and blocks.
func TestInactiveDownloader(t *testing.T) {
	tester := newTester()

	// Check that neither hashes nor blocks are accepted
	if err := tester.downloader.DeliverHashes("bad peer", []common.Hash{}); err != errNoSyncActive {
		t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
	}
	if err := tester.downloader.DeliverBlocks("bad peer", []*types.Block{}); err != errNoSyncActive {
		t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
	}
}

// Tests that a canceled download wipes all previously accumulated state.
func TestCancel60(t *testing.T) {
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

	tester := newTester()
	tester.newPeer("peer", eth60, hashes, blocks)

	// Make sure canceling works with a pristine downloader
	tester.downloader.cancel()
	hashCount, blockCount := tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
	// Synchronise with the peer, but cancel afterwards
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	tester.downloader.cancel()
	hashCount, blockCount = tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
}

// Tests that a canceled download wipes all previously accumulated state.
func TestCancel(t *testing.T) {
	// Create a small enough block chain to download and the tester
	targetBlocks := blockCacheLimit - 15
	if targetBlocks >= MaxHashFetch {
		targetBlocks = MaxHashFetch - 15
	}
	hashes, blocks := makeChain(targetBlocks, 0, genesis)

	tester := newTester()
	tester.newPeer("peer", eth61, hashes, blocks)

	// Make sure canceling works with a pristine downloader
	tester.downloader.cancel()
	hashCount, blockCount := tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
	// Synchronise with the peer, but cancel afterwards
	if err := tester.sync("peer"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	tester.downloader.cancel()
	hashCount, blockCount = tester.downloader.queue.Size()
	if hashCount > 0 || blockCount > 0 {
		t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
	}
}

478 479 480 481 482
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation(t *testing.T) {
	// Create various peers with various parts of the chain
	targetPeers := 16
	targetBlocks := targetPeers*blockCacheLimit - 15
483
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
484 485 486 487

	tester := newTester()
	for i := 0; i < targetPeers; i++ {
		id := fmt.Sprintf("peer #%d", i)
488
		tester.newPeer(id, eth60, hashes[i*blockCacheLimit:], blocks)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
	// Synchronise with the middle peer and make sure half of the blocks were retrieved
	id := fmt.Sprintf("peer #%d", targetPeers/2)
	if err := tester.sync(id); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != len(tester.peerHashes[id]) {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(tester.peerHashes[id]))
	}
	// Synchronise with the best peer and make sure everything is retrieved
	if err := tester.sync("peer #0"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
	}
}

507 508 509 510 511 512 513 514
// Tests that synchronising with a peer who's very slow at network IO does not
// stall the other peers in the system.
func TestSlowSynchronisation(t *testing.T) {
	tester := newTester()

	// Create a batch of blocks, with a slow and a full speed peer
	targetCycles := 2
	targetBlocks := targetCycles*blockCacheLimit - 15
515
	targetIODelay := time.Second
516
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
517

518 519
	tester.newSlowPeer("fast", eth60, hashes, blocks, 0)
	tester.newSlowPeer("slow", eth60, hashes, blocks, targetIODelay)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

	// Try to sync with the peers (pull hashes from fast)
	start := time.Now()
	if err := tester.sync("fast"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
		t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
	}
	// Check that the slow peer got hit at most once per block-cache-size import
	limit := time.Duration(targetCycles+1) * targetIODelay
	if delay := time.Since(start); delay >= limit {
		t.Fatalf("synchronisation exceeded delay limit: have %v, want %v", delay, limit)
	}
}

536 537 538
// Tests that if a peer returns an invalid chain with a block pointing to a non-
// existing parent, it is correctly detected and handled.
func TestNonExistingParentAttack(t *testing.T) {
539 540
	tester := newTester()

541
	// Forge a single-link chain with a forged header
542
	hashes, blocks := makeChain(1, 0, genesis)
543
	tester.newPeer("valid", eth60, hashes, blocks)
544

545 546 547
	wrongblock := types.NewBlock(&types.Header{}, nil, nil, nil)
	wrongblock.Td = blocks[hashes[0]].Td
	hashes, blocks = makeChain(1, 0, wrongblock)
548
	tester.newPeer("attack", eth60, hashes, blocks)
549 550

	// Try and sync with the malicious node and check that it fails
551 552
	if err := tester.sync("attack"); err == nil {
		t.Fatalf("block synchronization succeeded")
553
	}
554 555
	if tester.hasBlock(hashes[0]) {
		t.Fatalf("tester accepted unknown-parent block: %v", blocks[hashes[0]])
556
	}
557 558
	// Try to synchronize with the valid chain and make sure it succeeds
	if err := tester.sync("valid"); err != nil {
559 560
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
561 562
	if !tester.hasBlock(tester.peerHashes["valid"][0]) {
		t.Fatalf("tester didn't accept known-parent block: %v", tester.peerBlocks["valid"][hashes[0]])
563
	}
564
}
565 566 567

// Tests that if a malicious peers keeps sending us repeating hashes, we don't
// loop indefinitely.
568 569 570
func TestRepeatingHashAttack(t *testing.T) { // TODO: Is this thing valid??
	tester := newTester()

571
	// Create a valid chain, but drop the last link
572
	hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
573 574
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, hashes[:len(hashes)-1], blocks)
575 576 577 578

	// Try and sync with the malicious node
	errc := make(chan error)
	go func() {
579
		errc <- tester.sync("attack")
580 581 582
	}()
	// Make sure that syncing returns and does so with a failure
	select {
583
	case <-time.After(time.Second):
584 585 586 587 588 589
		t.Fatalf("synchronisation blocked")
	case err := <-errc:
		if err == nil {
			t.Fatalf("synchronisation succeeded")
		}
	}
590
	// Ensure that a valid chain can still pass sync
591
	if err := tester.sync("valid"); err != nil {
592 593
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
594
}
595 596 597 598

// Tests that if a malicious peers returns a non-existent block hash, it should
// eventually time out and the sync reattempted.
func TestNonExistingBlockAttack(t *testing.T) {
599 600
	tester := newTester()

601
	// Create a valid chain, but forge the last link
602
	hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
603
	tester.newPeer("valid", eth60, hashes, blocks)
604

605
	hashes[len(hashes)/2] = common.Hash{}
606
	tester.newPeer("attack", eth60, hashes, blocks)
607 608

	// Try and sync with the malicious node and check that it fails
609
	if err := tester.sync("attack"); err != errPeersUnavailable {
610 611
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errPeersUnavailable)
	}
612
	// Ensure that a valid chain can still pass sync
613
	if err := tester.sync("valid"); err != nil {
614 615
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
616
}
617 618 619 620

// Tests that if a malicious peer is returning hashes in a weird order, that the
// sync throttler doesn't choke on them waiting for the valid blocks.
func TestInvalidHashOrderAttack(t *testing.T) {
621 622
	tester := newTester()

623
	// Create a valid long chain, but reverse some hashes within
624
	hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)
625
	tester.newPeer("valid", eth60, hashes, blocks)
626

627 628 629 630 631
	chunk1 := make([]common.Hash, blockCacheLimit)
	chunk2 := make([]common.Hash, blockCacheLimit)
	copy(chunk1, hashes[blockCacheLimit:2*blockCacheLimit])
	copy(chunk2, hashes[2*blockCacheLimit:3*blockCacheLimit])

632 633
	copy(hashes[2*blockCacheLimit:], chunk1)
	copy(hashes[blockCacheLimit:], chunk2)
634
	tester.newPeer("attack", eth60, hashes, blocks)
635 636

	// Try and sync with the malicious node and check that it fails
637
	if err := tester.sync("attack"); err != errInvalidChain {
638
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
639 640
	}
	// Ensure that a valid chain can still pass sync
641
	if err := tester.sync("valid"); err != nil {
642 643 644
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
}
645 646 647 648

// Tests that if a malicious peer makes up a random hash chain and tries to push
// indefinitely, it actually gets caught with it.
func TestMadeupHashChainAttack(t *testing.T) {
649
	tester := newTester()
650
	blockSoftTTL = 100 * time.Millisecond
651 652 653
	crossCheckCycle = 25 * time.Millisecond

	// Create a long chain of hashes without backing blocks
654 655 656 657 658 659
	hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)

	randomHashes := make([]common.Hash, 1024*blockCacheLimit)
	for i := range randomHashes {
		rand.Read(randomHashes[i][:])
	}
660

661 662
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, randomHashes, nil)
663 664

	// Try and sync with the malicious node and check that it fails
665
	if err := tester.sync("attack"); err != errCrossCheckFailed {
666
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
667
	}
668
	// Ensure that a valid chain can still pass sync
669
	if err := tester.sync("valid"); err != nil {
670 671
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
672
}
673

674 675 676 677 678 679
// Tests that if a malicious peer makes up a random hash chain, and tries to push
// indefinitely, one hash at a time, it actually gets caught with it. The reason
// this is separate from the classical made up chain attack is that sending hashes
// one by one prevents reliable block/parent verification.
func TestMadeupHashChainDrippingAttack(t *testing.T) {
	// Create a random chain of hashes to drip
680 681 682 683 684
	randomHashes := make([]common.Hash, 16*blockCacheLimit)
	for i := range randomHashes {
		rand.Read(randomHashes[i][:])
	}
	randomHashes[len(randomHashes)-1] = genesis.Hash()
685
	tester := newTester()
686 687 688

	// Try and sync with the attacker, one hash at a time
	tester.maxHashFetch = 1
689
	tester.newPeer("attack", eth60, randomHashes, nil)
690
	if err := tester.sync("attack"); err != errStallingPeer {
691
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
692 693 694
	}
}

695 696 697
// Tests that if a malicious peer makes up a random block chain, and tried to
// push indefinitely, it actually gets caught with it.
func TestMadeupBlockChainAttack(t *testing.T) {
698
	defaultBlockTTL := blockSoftTTL
699 700
	defaultCrossCheckCycle := crossCheckCycle

701
	blockSoftTTL = 100 * time.Millisecond
702 703 704
	crossCheckCycle = 25 * time.Millisecond

	// Create a long chain of blocks and simulate an invalid chain by dropping every second
705
	hashes, blocks := makeChain(16*blockCacheLimit, 0, genesis)
706 707 708 709 710
	gapped := make([]common.Hash, len(hashes)/2)
	for i := 0; i < len(gapped); i++ {
		gapped[i] = hashes[2*i]
	}
	// Try and sync with the malicious node and check that it fails
711
	tester := newTester()
712
	tester.newPeer("attack", eth60, gapped, blocks)
713
	if err := tester.sync("attack"); err != errCrossCheckFailed {
714
		t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
715 716
	}
	// Ensure that a valid chain can still pass sync
717
	blockSoftTTL = defaultBlockTTL
718 719
	crossCheckCycle = defaultCrossCheckCycle

720
	tester.newPeer("valid", eth60, hashes, blocks)
721
	if err := tester.sync("valid"); err != nil {
722 723 724
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
}
725

726
// Tests that if one/multiple malicious peers try to feed a banned blockchain to
727
// the downloader, it will not keep refetching the same chain indefinitely, but
728
// gradually block pieces of it, until its head is also blocked.
729
func TestBannedChainStarvationAttack(t *testing.T) {
730 731 732
	n := 8 * blockCacheLimit
	fork := n/2 - 23
	hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)
733

734 735 736
	// Create the tester and ban the selected hash.
	tester := newTester()
	tester.downloader.banned.Add(forkHashes[fork-1])
737 738
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, forkHashes, forkBlocks)
739

740 741 742 743
	// Iteratively try to sync, and verify that the banned hash list grows until
	// the head of the invalid chain is blocked too.
	for banned := tester.downloader.banned.Size(); ; {
		// Try to sync with the attacker, check hash chain failure
744
		if err := tester.sync("attack"); err != errInvalidChain {
745
			if tester.downloader.banned.Has(forkHashes[0]) && err == errBannedHead {
746 747
				break
			}
748
			t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
749 750 751 752 753 754 755 756
		}
		// Check that the ban list grew with at least 1 new item, or all banned
		bans := tester.downloader.banned.Size()
		if bans < banned+1 {
			t.Fatalf("ban count mismatch: have %v, want %v+", bans, banned+1)
		}
		banned = bans
	}
757
	// Check that after banning an entire chain, bad peers get dropped
758
	if err := tester.newPeer("new attacker", eth60, forkHashes, forkBlocks); err != errBannedHead {
759 760
		t.Fatalf("peer registration mismatch: have %v, want %v", err, errBannedHead)
	}
761
	if peer := tester.downloader.peers.Peer("new attacker"); peer != nil {
762 763
		t.Fatalf("banned attacker registered: %v", peer)
	}
764
	// Ensure that a valid chain can still pass sync
765
	if err := tester.sync("valid"); err != nil {
766 767
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
768
}
769 770 771 772 773

// Tests that if a peer sends excessively many/large invalid chains that are
// gradually banned, it will have an upper limit on the consumed memory and also
// the origin bad hashes will not be evacuated.
func TestBannedChainMemoryExhaustionAttack(t *testing.T) {
774 775 776 777 778 779
	// Construct a banned chain with more chunks than the ban limit
	n := 8 * blockCacheLimit
	fork := n/2 - 23
	hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)

	// Create the tester and ban the root hash of the fork.
780
	tester := newTester()
781
	tester.downloader.banned.Add(forkHashes[fork-1])
782

783
	// Reduce the test size a bit
784 785 786
	defaultMaxBlockFetch := MaxBlockFetch
	defaultMaxBannedHashes := maxBannedHashes

787 788 789
	MaxBlockFetch = 4
	maxBannedHashes = 256

790 791
	tester.newPeer("valid", eth60, hashes, blocks)
	tester.newPeer("attack", eth60, forkHashes, forkBlocks)
792 793 794 795 796

	// Iteratively try to sync, and verify that the banned hash list grows until
	// the head of the invalid chain is blocked too.
	for {
		// Try to sync with the attacker, check hash chain failure
797
		if err := tester.sync("attack"); err != errInvalidChain {
798
			t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
799
		}
800 801
		// Short circuit if the entire chain was banned.
		if tester.downloader.banned.Has(forkHashes[0]) {
802 803 804 805 806 807 808 809 810 811 812 813
			break
		}
		// Otherwise ensure we never exceed the memory allowance and the hard coded bans are untouched
		if bans := tester.downloader.banned.Size(); bans > maxBannedHashes {
			t.Fatalf("ban cap exceeded: have %v, want max %v", bans, maxBannedHashes)
		}
		for hash, _ := range core.BadHashes {
			if !tester.downloader.banned.Has(hash) {
				t.Fatalf("hard coded ban evacuated: %x", hash)
			}
		}
	}
814 815 816 817
	// Ensure that a valid chain can still pass sync
	MaxBlockFetch = defaultMaxBlockFetch
	maxBannedHashes = defaultMaxBannedHashes

818
	if err := tester.sync("valid"); err != nil {
819 820
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
821
}
822

823 824 825 826 827 828 829 830 831
// Tests a corner case (potential attack) where a peer delivers both good as well
// as unrequested blocks to a hash request. This may trigger a different code
// path than the fully correct or fully invalid delivery, potentially causing
// internal state problems
//
// No, don't delete this test, it actually did happen!
func TestOverlappingDeliveryAttack(t *testing.T) {
	// Create an arbitrary batch of blocks ( < cache-size not to block)
	targetBlocks := blockCacheLimit - 23
832
	hashes, blocks := makeChain(targetBlocks, 0, genesis)
833 834 835

	// Register an attacker that always returns non-requested blocks too
	tester := newTester()
836
	tester.newPeer("attack", eth60, hashes, blocks)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	rawGetBlocks := tester.downloader.peers.Peer("attack").getBlocks
	tester.downloader.peers.Peer("attack").getBlocks = func(request []common.Hash) error {
		// Add a non requested hash the screw the delivery (genesis should be fine)
		return rawGetBlocks(append(request, hashes[0]))
	}
	// Test that synchronisation can complete, check for import success
	if err := tester.sync("attack"); err != nil {
		t.Fatalf("failed to synchronise blocks: %v", err)
	}
	start := time.Now()
	for len(tester.ownHashes) != len(hashes) && time.Since(start) < time.Second {
		time.Sleep(50 * time.Millisecond)
	}
	if len(tester.ownHashes) != len(hashes) {
		t.Fatalf("chain length mismatch: have %v, want %v", len(tester.ownHashes), len(hashes))
	}
}

856
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
857 858
func TestHashAttackerDropping(t *testing.T) {
	// Define the disconnection requirement for individual hash fetch errors
859 860 861 862
	tests := []struct {
		result error
		drop   bool
	}{
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		{nil, false},                 // Sync succeeded, all is well
		{errBusy, false},             // Sync is already in progress, no problem
		{errUnknownPeer, false},      // Peer is unknown, was already dropped, don't double drop
		{errBadPeer, true},           // Peer was deemed bad for some reason, drop it
		{errStallingPeer, true},      // Peer was detected to be stalling, drop it
		{errBannedHead, true},        // Peer's head hash is a known bad hash, drop it
		{errNoPeers, false},          // No peers to download from, soft race, no issue
		{errPendingQueue, false},     // There are blocks still cached, wait to exhaust, no issue
		{errTimeout, true},           // No hashes received in due time, drop the peer
		{errEmptyHashSet, true},      // No hashes were returned as a response, drop as it's a dead end
		{errPeersUnavailable, true},  // Nobody had the advertised blocks, drop the advertiser
		{errInvalidChain, true},      // Hash chain was detected as invalid, definitely drop
		{errCrossCheckFailed, true},  // Hash-origin failed to pass a block cross check, drop
		{errCancelHashFetch, false},  // Synchronisation was canceled, origin may be innocent, don't drop
		{errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop
878 879 880 881 882 883
	}
	// Run the tests and check disconnection status
	tester := newTester()
	for i, tt := range tests {
		// Register a new peer and ensure it's presence
		id := fmt.Sprintf("test %d", i)
884
		if err := tester.newPeer(id, eth60, []common.Hash{genesis.Hash()}, nil); err != nil {
885 886 887 888 889 890 891 892
			t.Fatalf("test %d: failed to register new peer: %v", i, err)
		}
		if _, ok := tester.peerHashes[id]; !ok {
			t.Fatalf("test %d: registered peer not found", i)
		}
		// Simulate a synchronisation and check the required result
		tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }

893
		tester.downloader.Synchronise(id, genesis.Hash())
894 895 896 897 898
		if _, ok := tester.peerHashes[id]; !ok != tt.drop {
			t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
		}
	}
}
899 900 901 902 903 904 905

// Tests that feeding bad blocks will result in a peer drop.
func TestBlockAttackerDropping(t *testing.T) {
	// Define the disconnection requirement for individual block import errors
	tests := []struct {
		failure bool
		drop    bool
906 907 908 909
	}{
		{true, true},
		{false, false},
	}
910 911 912 913 914 915

	// Run the tests and check disconnection status
	tester := newTester()
	for i, tt := range tests {
		// Register a new peer and ensure it's presence
		id := fmt.Sprintf("test %d", i)
916
		if err := tester.newPeer(id, eth60, []common.Hash{common.Hash{}}, nil); err != nil {
917 918 919 920 921 922
			t.Fatalf("test %d: failed to register new peer: %v", i, err)
		}
		if _, ok := tester.peerHashes[id]; !ok {
			t.Fatalf("test %d: registered peer not found", i)
		}
		// Assemble a good or bad block, depending of the test
923
		raw := core.GenerateChain(genesis, testdb, 1, nil)[0]
924
		if tt.failure {
925 926
			parent := types.NewBlock(&types.Header{}, nil, nil, nil)
			raw = core.GenerateChain(parent, testdb, 1, nil)[0]
927 928 929 930 931 932 933 934 935 936 937
		}
		block := &Block{OriginPeer: id, RawBlock: raw}

		// Simulate block processing and check the result
		tester.downloader.queue.blockCache[0] = block
		tester.downloader.process()
		if _, ok := tester.peerHashes[id]; !ok != tt.drop {
			t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.failure, !ok, tt.drop)
		}
	}
}