test_bmn.py 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17
import os
import tempfile
18
import unittest
19 20 21 22

import numpy as np
from predictor_utils import PredictorTools

L
Leo Chen 已提交
23
import paddle
24 25 26
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from paddle.fluid.dygraph import to_variable
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
28
from paddle.jit import ProgramTranslator, to_static
29

M
MRXLT 已提交
30
SEED = 2000
31 32 33 34 35 36 37 38 39 40
DATATYPE = 'float32'
program_translator = ProgramTranslator()

# Note: Set True to eliminate randomness.
#     1. For one operation, cuDNN has several algorithms,
#        some algorithm results are non-deterministic, like convolution algorithms.
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})


41 42 43 44
def get_interp1d_mask(
    tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin
):
    """generate sample mask for each point in Boundary-Matching Map"""
45 46 47 48 49 50 51 52 53 54
    mask_mat = []
    for start_index in range(tscale):
        mask_mat_vector = []
        for duration_index in range(dscale):
            if start_index + duration_index < tscale:
                p_xmin = start_index
                p_xmax = start_index + duration_index
                center_len = float(p_xmax - p_xmin) + 1
                sample_xmin = p_xmin - center_len * prop_boundary_ratio
                sample_xmax = p_xmax + center_len * prop_boundary_ratio
55 56 57 58 59 60 61
                p_mask = _get_interp1d_bin_mask(
                    sample_xmin,
                    sample_xmax,
                    tscale,
                    num_sample,
                    num_sample_perbin,
                )
62 63 64 65 66 67 68 69 70 71 72 73
            else:
                p_mask = np.zeros([tscale, num_sample])
            mask_mat_vector.append(p_mask)
        mask_mat_vector = np.stack(mask_mat_vector, axis=2)
        mask_mat.append(mask_mat_vector)
    mask_mat = np.stack(mask_mat, axis=3)
    mask_mat = mask_mat.astype(np.float32)

    sample_mask = np.reshape(mask_mat, [tscale, -1])
    return sample_mask


74 75 76 77
def _get_interp1d_bin_mask(
    seg_xmin, seg_xmax, tscale, num_sample, num_sample_perbin
):
    """generate sample mask for a boundary-matching pair"""
78 79 80 81 82 83 84 85
    plen = float(seg_xmax - seg_xmin)
    plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
    total_samples = [
        seg_xmin + plen_sample * ii
        for ii in range(num_sample * num_sample_perbin)
    ]
    p_mask = []
    for idx in range(num_sample):
86 87 88
        bin_samples = total_samples[
            idx * num_sample_perbin : (idx + 1) * num_sample_perbin
        ]
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        bin_vector = np.zeros([tscale])
        for sample in bin_samples:
            sample_upper = math.ceil(sample)
            sample_decimal, sample_down = math.modf(sample)
            if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0:
                bin_vector[int(sample_down)] += 1 - sample_decimal
            if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0:
                bin_vector[int(sample_upper)] += sample_decimal
        bin_vector = 1.0 / num_sample_perbin * bin_vector
        p_mask.append(bin_vector)
    p_mask = np.stack(p_mask, axis=1)
    return p_mask


class Conv1D(fluid.dygraph.Layer):
104 105 106 107 108 109 110 111 112 113
    def __init__(
        self,
        prefix,
        num_channels=256,
        num_filters=256,
        size_k=3,
        padding=1,
        groups=1,
        act="relu",
    ):
114
        super().__init__()
115
        fan_in = num_channels * size_k * 1
116 117 118 119 120 121 122 123 124 125
        k = 1.0 / math.sqrt(fan_in)
        param_attr = ParamAttr(
            name=prefix + "_w",
            initializer=fluid.initializer.Uniform(low=-k, high=k),
        )
        bias_attr = ParamAttr(
            name=prefix + "_b",
            initializer=fluid.initializer.Uniform(low=-k, high=k),
        )

126 127 128 129
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=(1, size_k),
130 131 132
            stride=1,
            padding=(0, padding),
            groups=groups,
133
            weight_attr=param_attr,
134 135
            bias_attr=bias_attr,
        )
136 137 138 139

    def forward(self, x):
        x = fluid.layers.unsqueeze(input=x, axes=[2])
        x = self._conv2d(x)
140
        x = paddle.squeeze(x, axis=[2])
141 142 143 144 145
        return x


class BMN(fluid.dygraph.Layer):
    def __init__(self, cfg):
146
        super().__init__()
147 148 149 150 151 152 153 154 155 156 157 158

        self.tscale = cfg.tscale
        self.dscale = cfg.dscale
        self.prop_boundary_ratio = cfg.prop_boundary_ratio
        self.num_sample = cfg.num_sample
        self.num_sample_perbin = cfg.num_sample_perbin

        self.hidden_dim_1d = 256
        self.hidden_dim_2d = 128
        self.hidden_dim_3d = 512

        # Base Module
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        self.b_conv1 = Conv1D(
            prefix="Base_1",
            num_channels=cfg.feat_dim,
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.b_conv2 = Conv1D(
            prefix="Base_2",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
176 177

        # Temporal Evaluation Module
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.ts_conv1 = Conv1D(
            prefix="TEM_s1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.ts_conv2 = Conv1D(
            prefix="TEM_s2", num_filters=1, size_k=1, padding=0, act="sigmoid"
        )
        self.te_conv1 = Conv1D(
            prefix="TEM_e1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.te_conv2 = Conv1D(
            prefix="TEM_e2", num_filters=1, size_k=1, padding=0, act="sigmoid"
        )

        # Proposal Evaluation Module
        self.p_conv1 = Conv1D(
            prefix="PEM_1d",
            num_filters=self.hidden_dim_2d,
            size_k=3,
            padding=1,
            act="relu",
        )
209 210

        # init to speed up
211 212 213 214 215 216 217
        sample_mask = get_interp1d_mask(
            self.tscale,
            self.dscale,
            self.prop_boundary_ratio,
            self.num_sample,
            self.num_sample_perbin,
        )
218 219
        self.sample_mask = fluid.dygraph.base.to_variable(sample_mask)
        self.sample_mask.stop_gradient = True
220

221 222 223 224
        self.p_conv3d1 = paddle.nn.Conv3D(
            in_channels=128,
            out_channels=self.hidden_dim_3d,
            kernel_size=(self.num_sample, 1, 1),
225 226
            stride=(self.num_sample, 1, 1),
            padding=0,
227 228
            weight_attr=paddle.ParamAttr(name="PEM_3d1_w"),
            bias_attr=paddle.ParamAttr(name="PEM_3d1_b"),
229
        )
230

231 232 233 234
        self.p_conv2d1 = paddle.nn.Conv2D(
            in_channels=512,
            out_channels=self.hidden_dim_2d,
            kernel_size=1,
235 236
            stride=1,
            padding=0,
237
            weight_attr=ParamAttr(name="PEM_2d1_w"),
238 239
            bias_attr=ParamAttr(name="PEM_2d1_b"),
        )
240 241 242 243
        self.p_conv2d2 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=self.hidden_dim_2d,
            kernel_size=3,
244 245
            stride=1,
            padding=1,
246
            weight_attr=ParamAttr(name="PEM_2d2_w"),
247 248
            bias_attr=ParamAttr(name="PEM_2d2_b"),
        )
249 250 251 252
        self.p_conv2d3 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=self.hidden_dim_2d,
            kernel_size=3,
253 254
            stride=1,
            padding=1,
255
            weight_attr=ParamAttr(name="PEM_2d3_w"),
256 257
            bias_attr=ParamAttr(name="PEM_2d3_b"),
        )
258 259 260 261
        self.p_conv2d4 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=2,
            kernel_size=1,
262 263
            stride=1,
            padding=0,
264
            weight_attr=ParamAttr(name="PEM_2d4_w"),
265 266
            bias_attr=ParamAttr(name="PEM_2d4_b"),
        )
267

A
Aurelius84 已提交
268
    @to_static
269 270
    def forward(self, x):
        # Base Module
271 272
        x = paddle.nn.functional.relu(self.b_conv1(x))
        x = paddle.nn.functional.relu(self.b_conv2(x))
273 274

        # TEM
275 276
        xs = paddle.nn.functional.relu(self.ts_conv1(x))
        xs = paddle.nn.functional.relu(self.ts_conv2(xs))
277
        xs = paddle.squeeze(xs, axis=[1])
278 279
        xe = paddle.nn.functional.relu(self.te_conv1(x))
        xe = paddle.nn.functional.relu(self.te_conv2(xe))
280
        xe = paddle.squeeze(xe, axis=[1])
281 282

        # PEM
283
        xp = paddle.nn.functional.relu(self.p_conv1(x))
284
        # BM layer
285
        xp = fluid.layers.matmul(xp, self.sample_mask)
286
        xp = paddle.reshape(xp, shape=[0, 0, -1, self.dscale, self.tscale])
287 288

        xp = self.p_conv3d1(xp)
289
        xp = paddle.tanh(xp)
290
        xp = paddle.squeeze(xp, axis=[2])
291 292 293 294
        xp = paddle.nn.functional.relu(self.p_conv2d1(xp))
        xp = paddle.nn.functional.relu(self.p_conv2d2(xp))
        xp = paddle.nn.functional.relu(self.p_conv2d3(xp))
        xp = paddle.nn.functional.sigmoid(self.p_conv2d4(xp))
295 296 297
        return xp, xs, xe


298 299 300
def bmn_loss_func(
    pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, cfg
):
301 302 303 304 305
    def _get_mask(cfg):
        dscale = cfg.dscale
        tscale = cfg.tscale
        bm_mask = []
        for idx in range(dscale):
306 307 308
            mask_vector = [1 for i in range(tscale - idx)] + [
                0 for i in range(idx)
            ]
309 310
            bm_mask.append(mask_vector)
        bm_mask = np.array(bm_mask, dtype=np.float32)
311 312 313
        self_bm_mask = fluid.layers.create_global_var(
            shape=[dscale, tscale], value=0, dtype=DATATYPE, persistable=True
        )
314 315 316 317 318 319
        fluid.layers.assign(bm_mask, self_bm_mask)
        self_bm_mask.stop_gradient = True
        return self_bm_mask

    def tem_loss_func(pred_start, pred_end, gt_start, gt_end):
        def bi_loss(pred_score, gt_label):
320 321
            pred_score = paddle.reshape(x=pred_score, shape=[-1])
            gt_label = paddle.reshape(x=gt_label, shape=[-1])
322 323
            gt_label.stop_gradient = True
            pmask = fluid.layers.cast(x=(gt_label > 0.5), dtype=DATATYPE)
2
201716010711 已提交
324
            num_entries = fluid.layers.cast(paddle.shape(pmask), dtype=DATATYPE)
325
            num_positive = fluid.layers.cast(paddle.sum(pmask), dtype=DATATYPE)
326 327 328 329
            ratio = num_entries / num_positive
            coef_0 = 0.5 * ratio / (ratio - 1)
            coef_1 = 0.5 * ratio
            epsilon = 0.000001
330 331
            # temp = paddle.log(pred_score + epsilon)
            loss_pos = paddle.multiply(paddle.log(pred_score + epsilon), pmask)
332
            loss_pos = coef_1 * paddle.mean(loss_pos)
333
            loss_neg = paddle.multiply(
334
                paddle.log(1.0 - pred_score + epsilon), (1.0 - pmask)
335
            )
336
            loss_neg = coef_0 * paddle.mean(loss_neg)
337 338 339 340 341 342 343 344 345 346
            loss = -1 * (loss_pos + loss_neg)
            return loss

        loss_start = bi_loss(pred_start, gt_start)
        loss_end = bi_loss(pred_end, gt_end)
        loss = loss_start + loss_end
        return loss

    def pem_reg_loss_func(pred_score, gt_iou_map, mask):

347
        gt_iou_map = paddle.multiply(gt_iou_map, mask)
348 349

        u_hmask = fluid.layers.cast(x=gt_iou_map > 0.7, dtype=DATATYPE)
350
        u_mmask = paddle.logical_and(gt_iou_map <= 0.7, gt_iou_map > 0.3)
351
        u_mmask = fluid.layers.cast(x=u_mmask, dtype=DATATYPE)
352
        u_lmask = paddle.logical_and(gt_iou_map <= 0.3, gt_iou_map >= 0.0)
353
        u_lmask = fluid.layers.cast(x=u_lmask, dtype=DATATYPE)
354
        u_lmask = paddle.multiply(u_lmask, mask)
355

356 357 358
        num_h = fluid.layers.cast(paddle.sum(u_hmask), dtype=DATATYPE)
        num_m = fluid.layers.cast(paddle.sum(u_mmask), dtype=DATATYPE)
        num_l = fluid.layers.cast(paddle.sum(u_lmask), dtype=DATATYPE)
359 360 361

        r_m = num_h / num_m
        u_smmask = fluid.layers.assign(
362
            local_random.uniform(
363 364 365
                0.0, 1.0, [gt_iou_map.shape[1], gt_iou_map.shape[2]]
            ).astype(DATATYPE)
        )
366
        u_smmask = paddle.multiply(u_mmask, u_smmask)
367
        u_smmask = fluid.layers.cast(x=(u_smmask > (1.0 - r_m)), dtype=DATATYPE)
368 369 370

        r_l = num_h / num_l
        u_slmask = fluid.layers.assign(
371
            local_random.uniform(
372 373 374
                0.0, 1.0, [gt_iou_map.shape[1], gt_iou_map.shape[2]]
            ).astype(DATATYPE)
        )
375
        u_slmask = paddle.multiply(u_lmask, u_slmask)
376
        u_slmask = fluid.layers.cast(x=(u_slmask > (1.0 - r_l)), dtype=DATATYPE)
377 378 379

        weights = u_hmask + u_smmask + u_slmask
        weights.stop_gradient = True
380
        loss = paddle.nn.functional.square_error_cost(pred_score, gt_iou_map)
381
        loss = paddle.multiply(loss, weights)
382
        loss = 0.5 * paddle.sum(loss) / paddle.sum(weights)
383 384 385 386

        return loss

    def pem_cls_loss_func(pred_score, gt_iou_map, mask):
387
        gt_iou_map = paddle.multiply(gt_iou_map, mask)
388 389 390
        gt_iou_map.stop_gradient = True
        pmask = fluid.layers.cast(x=(gt_iou_map > 0.9), dtype=DATATYPE)
        nmask = fluid.layers.cast(x=(gt_iou_map <= 0.9), dtype=DATATYPE)
391
        nmask = paddle.multiply(nmask, mask)
392

393 394
        num_positive = paddle.sum(pmask)
        num_entries = num_positive + paddle.sum(nmask)
395 396 397 398
        ratio = num_entries / num_positive
        coef_0 = 0.5 * ratio / (ratio - 1)
        coef_1 = 0.5 * ratio
        epsilon = 0.000001
399
        loss_pos = paddle.multiply(paddle.log(pred_score + epsilon), pmask)
400
        loss_pos = coef_1 * paddle.sum(loss_pos)
401
        loss_neg = paddle.multiply(
402
            paddle.log(1.0 - pred_score + epsilon), nmask
403
        )
404
        loss_neg = coef_0 * paddle.sum(loss_neg)
405 406 407
        loss = -1 * (loss_pos + loss_neg) / num_entries
        return loss

408
    pred_bm_reg = paddle.squeeze(
2
201716010711 已提交
409
        paddle.slice(pred_bm, axes=[1], starts=[0], ends=[1]), axis=[1]
410
    )
411
    pred_bm_cls = paddle.squeeze(
2
201716010711 已提交
412
        paddle.slice(pred_bm, axes=[1], starts=[1], ends=[2]), axis=[1]
413
    )
414 415 416 417 418 419 420 421 422 423 424 425

    bm_mask = _get_mask(cfg)

    pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
    pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)

    tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end)

    loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
    return loss, tem_loss, pem_reg_loss, pem_cls_loss


426
class Args:
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    epoch = 1
    batch_size = 4
    learning_rate = 0.1
    learning_rate_decay = 0.1
    lr_decay_iter = 4200
    l2_weight_decay = 1e-4
    valid_interval = 20
    log_interval = 5
    train_batch_num = valid_interval
    valid_batch_num = 5

    tscale = 50
    dscale = 50
    feat_dim = 100
    prop_boundary_ratio = 0.5
    num_sample = 2
    num_sample_perbin = 2


def optimizer(cfg, parameter_list):
    bd = [cfg.lr_decay_iter]
    base_lr = cfg.learning_rate
    lr_decay = cfg.learning_rate_decay
    l2_weight_decay = cfg.l2_weight_decay
    lr = [base_lr, base_lr * lr_decay]
    optimizer = fluid.optimizer.Adam(
453
        fluid.layers.piecewise_decay(boundaries=bd, values=lr),
454 455
        parameter_list=parameter_list,
        regularization=fluid.regularizer.L2DecayRegularizer(
456 457 458
            regularization_coeff=l2_weight_decay
        ),
    )
459 460 461 462 463
    return optimizer


def fake_data_reader(args, mode='train'):
    def iou_with_anchors(anchors_min, anchors_max, box_min, box_max):
464
        """Compute jaccard score between a box and the anchors."""
465 466 467
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
468
        inter_len = np.maximum(int_xmax - int_xmin, 0.0)
469 470 471 472 473
        union_len = len_anchors - inter_len + box_max - box_min
        jaccard = np.divide(inter_len, union_len)
        return jaccard

    def ioa_with_anchors(anchors_min, anchors_max, box_min, box_max):
474
        """Compute intersection between score a box and the anchors."""
475 476 477
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
478
        inter_len = np.maximum(int_xmax - int_xmin, 0.0)
479 480 481 482 483
        scores = np.divide(inter_len, len_anchors)
        return scores

    def get_match_map(tscale):
        match_map = []
484
        tgap = 1.0 / tscale
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        for idx in range(tscale):
            tmp_match_window = []
            xmin = tgap * idx
            for jdx in range(1, tscale + 1):
                xmax = xmin + tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        match_map = match_map
        anchor_xmin = [tgap * i for i in range(tscale)]
        anchor_xmax = [tgap * i for i in range(1, tscale + 1)]

        return match_map, anchor_xmin, anchor_xmax

    def get_video_label(match_map, anchor_xmin, anchor_xmax):
        video_second = local_random.randint(75, 90)
        label_num = local_random.randint(1, 3)

        gt_bbox = []
        gt_iou_map = []
        for idx in range(label_num):
508 509 510 511 512 513
            duration = local_random.uniform(
                video_second * 0.4, video_second * 0.8
            )
            start_t = local_random.uniform(
                0.1 * video_second, video_second - duration
            )
514 515 516
            tmp_start = max(min(1, start_t / video_second), 0)
            tmp_end = max(min(1, (start_t + duration) / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
517 518 519 520 521 522
            tmp_gt_iou_map = iou_with_anchors(
                match_map[:, 0], match_map[:, 1], tmp_start, tmp_end
            )
            tmp_gt_iou_map = np.reshape(
                tmp_gt_iou_map, [args.dscale, args.tscale]
            )
523 524 525 526 527 528 529
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
530
        gt_len_small = 3.0 / args.tscale
531
        gt_start_bboxs = np.stack(
532 533
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1
        )
534
        gt_end_bboxs = np.stack(
535 536
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1
        )
537 538 539 540 541

        match_score_start = []
        for jdx in range(len(anchor_xmin)):
            match_score_start.append(
                np.max(
542 543 544 545 546 547 548 549
                    ioa_with_anchors(
                        anchor_xmin[jdx],
                        anchor_xmax[jdx],
                        gt_start_bboxs[:, 0],
                        gt_start_bboxs[:, 1],
                    )
                )
            )
550 551 552 553
        match_score_end = []
        for jdx in range(len(anchor_xmin)):
            match_score_end.append(
                np.max(
554 555 556 557 558 559 560 561
                    ioa_with_anchors(
                        anchor_xmin[jdx],
                        anchor_xmax[jdx],
                        gt_end_bboxs[:, 0],
                        gt_end_bboxs[:, 1],
                    )
                )
            )
562 563 564 565 566 567 568 569 570 571 572 573

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map, gt_start, gt_end

    def reader():
        batch_out = []
        iter_num = args.batch_size * 100
        match_map, anchor_xmin, anchor_xmax = get_match_map(args.tscale)

        for video_idx in range(iter_num):
            video_feat = local_random.random_sample(
574 575
                [args.feat_dim, args.tscale]
            ).astype('float32')
576
            gt_iou_map, gt_start, gt_end = get_video_label(
577 578
                match_map, anchor_xmin, anchor_xmax
            )
579 580 581 582 583

            if mode == 'train' or mode == 'valid':
                batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
            elif mode == 'test':
                batch_out.append(
584 585
                    (video_feat, gt_iou_map, gt_start, gt_end, video_idx)
                )
586
            else:
587
                raise NotImplementedError(
588 589
                    'mode {} not implemented'.format(mode)
                )
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            if len(batch_out) == args.batch_size:
                yield batch_out
                batch_out = []

    return reader


# Validation
def val_bmn(model, args):
    val_reader = fake_data_reader(args, 'valid')

    loss_data = []
    for batch_id, data in enumerate(val_reader()):
        video_feat = np.array([item[0] for item in data]).astype(DATATYPE)
        gt_iou_map = np.array([item[1] for item in data]).astype(DATATYPE)
        gt_start = np.array([item[2] for item in data]).astype(DATATYPE)
        gt_end = np.array([item[3] for item in data]).astype(DATATYPE)

        x_data = to_variable(video_feat)
        gt_iou_map = to_variable(gt_iou_map)
        gt_start = to_variable(gt_start)
        gt_end = to_variable(gt_end)
        gt_iou_map.stop_gradient = True
        gt_start.stop_gradient = True
        gt_end.stop_gradient = True

        pred_bm, pred_start, pred_end = model(x_data)

        loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
619 620
            pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, args
        )
621
        avg_loss = paddle.mean(loss)
622 623

        loss_data += [
624 625 626
            avg_loss.numpy()[0],
            tem_loss.numpy()[0],
            pem_reg_loss.numpy()[0],
627
            pem_cls_loss.numpy()[0],
628 629
        ]

630 631 632 633 634 635 636 637 638
        print(
            '[VALID] iter {} '.format(batch_id)
            + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
                '%f' % avg_loss.numpy()[0],
                '%f' % tem_loss.numpy()[0],
                '%f' % pem_reg_loss.numpy()[0],
                '%f' % pem_cls_loss.numpy()[0],
            )
        )
639 640 641 642 643 644 645 646 647

        if batch_id == args.valid_batch_num:
            break
    return loss_data


class TestTrain(unittest.TestCase):
    def setUp(self):
        self.args = Args()
648 649 650
        self.place = (
            fluid.CPUPlace()
            if not fluid.is_compiled_with_cuda()
651
            else fluid.CUDAPlace(0)
652
        )
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_save_dir = os.path.join(self.temp_dir.name, 'inference')
        self.model_save_prefix = os.path.join(self.model_save_dir, 'bmn')
        self.model_filename = "bmn" + INFER_MODEL_SUFFIX
        self.params_filename = "bmn" + INFER_PARAMS_SUFFIX
        self.dy_param_path = os.path.join(self.temp_dir.name, 'bmn_dy_param')

    def tearDown(self):
        self.temp_dir.cleanup()

    def train_bmn(self, args, place, to_static):
        program_translator.enable(to_static)
        loss_data = []

        with fluid.dygraph.guard(place):
            paddle.seed(SEED)
            paddle.framework.random._manual_program_seed(SEED)
            global local_random
            local_random = np.random.RandomState(SEED)

            bmn = BMN(args)
            adam = optimizer(args, parameter_list=bmn.parameters())

            train_reader = fake_data_reader(args, 'train')

            for epoch in range(args.epoch):
                for batch_id, data in enumerate(train_reader()):
681 682 683 684 685 686 687 688 689 690 691 692
                    video_feat = np.array([item[0] for item in data]).astype(
                        DATATYPE
                    )
                    gt_iou_map = np.array([item[1] for item in data]).astype(
                        DATATYPE
                    )
                    gt_start = np.array([item[2] for item in data]).astype(
                        DATATYPE
                    )
                    gt_end = np.array([item[3] for item in data]).astype(
                        DATATYPE
                    )
693 694 695 696 697 698 699 700 701 702 703 704

                    x_data = to_variable(video_feat)
                    gt_iou_map = to_variable(gt_iou_map)
                    gt_start = to_variable(gt_start)
                    gt_end = to_variable(gt_end)
                    gt_iou_map.stop_gradient = True
                    gt_start.stop_gradient = True
                    gt_end.stop_gradient = True

                    pred_bm, pred_start, pred_end = bmn(x_data)

                    loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
705 706 707 708 709 710 711 712
                        pred_bm,
                        pred_start,
                        pred_end,
                        gt_iou_map,
                        gt_start,
                        gt_end,
                        args,
                    )
713
                    avg_loss = paddle.mean(loss)
714 715 716 717 718 719

                    avg_loss.backward()
                    adam.minimize(avg_loss)
                    bmn.clear_gradients()
                    # log loss data to verify correctness
                    loss_data += [
720 721 722
                        avg_loss.numpy()[0],
                        tem_loss.numpy()[0],
                        pem_reg_loss.numpy()[0],
723
                        pem_cls_loss.numpy()[0],
724 725
                    ]

726 727 728 729 730 731 732 733 734 735 736 737
                    if args.log_interval > 0 and (
                        batch_id % args.log_interval == 0
                    ):
                        print(
                            '[TRAIN] Epoch {}, iter {} '.format(epoch, batch_id)
                            + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
                                '%f' % avg_loss.numpy()[0],
                                '%f' % tem_loss.numpy()[0],
                                '%f' % pem_reg_loss.numpy()[0],
                                '%f' % pem_cls_loss.numpy()[0],
                            )
                        )
738 739 740 741 742 743 744 745 746 747

                    # validation
                    if batch_id % args.valid_interval == 0 and batch_id > 0:
                        bmn.eval()
                        val_loss_data = val_bmn(bmn, args)
                        bmn.train()
                        loss_data += val_loss_data

                    if batch_id == args.train_batch_num:
                        if to_static:
748
                            paddle.jit.save(bmn, self.model_save_prefix)
749
                        else:
750 751 752
                            fluid.dygraph.save_dygraph(
                                bmn.state_dict(), self.dy_param_path
                            )
753 754 755
                        break
            return np.array(loss_data)

756 757
    def test_train(self):

758 759
        static_res = self.train_bmn(self.args, self.place, to_static=True)
        dygraph_res = self.train_bmn(self.args, self.place, to_static=False)
760 761 762 763 764
        np.testing.assert_allclose(
            dygraph_res,
            static_res,
            rtol=1e-05,
            err_msg='dygraph_res: {},\n static_res: {}'.format(
765
                dygraph_res[~np.isclose(dygraph_res, static_res)],
766 767 768 769
                static_res[~np.isclose(dygraph_res, static_res)],
            ),
            atol=1e-8,
        )
770 771 772 773 774 775 776 777 778 779 780 781

        # Prediction needs trained models, so put `test_predict` at last of `test_train`
        self.verify_predict()

    def verify_predict(self):
        args = Args()
        args.batch_size = 1  # change batch_size
        test_reader = fake_data_reader(args, 'test')
        for batch_id, data in enumerate(test_reader()):
            video_data = np.array([item[0] for item in data]).astype(DATATYPE)
            static_pred_res = self.predict_static(video_data)
            dygraph_pred_res = self.predict_dygraph(video_data)
782
            dygraph_jit_pred_res = self.predict_dygraph_jit(video_data)
783
            predictor_pred_res = self.predict_analysis_inference(video_data)
784

785
            for dy_res, st_res, dy_jit_res, predictor_res in zip(
786 787 788 789 790
                dygraph_pred_res,
                static_pred_res,
                dygraph_jit_pred_res,
                predictor_pred_res,
            ):
791 792 793 794 795
                np.testing.assert_allclose(
                    st_res,
                    dy_res,
                    rtol=1e-05,
                    err_msg='dygraph_res: {},\n static_res: {}'.format(
796
                        dy_res[~np.isclose(st_res, dy_res)],
797 798 799 800
                        st_res[~np.isclose(st_res, dy_res)],
                    ),
                    atol=1e-8,
                )
801 802 803 804 805
                np.testing.assert_allclose(
                    st_res,
                    dy_jit_res,
                    rtol=1e-05,
                    err_msg='dygraph_jit_res: {},\n static_res: {}'.format(
806
                        dy_jit_res[~np.isclose(st_res, dy_jit_res)],
807 808 809 810
                        st_res[~np.isclose(st_res, dy_jit_res)],
                    ),
                    atol=1e-8,
                )
811 812 813 814 815
                np.testing.assert_allclose(
                    st_res,
                    predictor_res,
                    rtol=1e-05,
                    err_msg='dygraph_jit_res: {},\n static_res: {}'.format(
816
                        predictor_res[~np.isclose(st_res, predictor_res)],
817 818 819 820
                        st_res[~np.isclose(st_res, predictor_res)],
                    ),
                    atol=1e-8,
                )
821 822 823 824 825 826 827
            break

    def predict_dygraph(self, data):
        program_translator.enable(False)
        with fluid.dygraph.guard(self.place):
            bmn = BMN(self.args)
            # load dygraph trained parameters
828
            model_dict, _ = fluid.load_dygraph(self.dy_param_path + ".pdparams")
829 830 831 832 833 834 835 836 837 838
            bmn.set_dict(model_dict)
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

    def predict_static(self, data):
839
        paddle.enable_static()
840 841
        exe = fluid.Executor(self.place)
        # load inference model
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(
            self.model_save_dir,
            executor=exe,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
        )
        pred_res = exe.run(
            inference_program,
            feed={feed_target_names[0]: data},
            fetch_list=fetch_targets,
        )
857 858 859

        return pred_res

860 861
    def predict_dygraph_jit(self, data):
        with fluid.dygraph.guard(self.place):
862
            bmn = paddle.jit.load(self.model_save_prefix)
863 864 865 866 867 868 869 870
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

871
    def predict_analysis_inference(self, data):
872 873 874 875 876 877
        output = PredictorTools(
            self.model_save_dir,
            self.model_filename,
            self.params_filename,
            [data],
        )
878 879 880
        out = output()
        return out

881 882

if __name__ == "__main__":
883 884
    with fluid.framework._test_eager_guard():
        unittest.main()