test_bmn.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
import unittest

import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from paddle.fluid.dygraph import to_variable
from paddle.fluid.dygraph import declarative, ProgramTranslator
23
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

SEED = 2020
DATATYPE = 'float32'
program_translator = ProgramTranslator()

# Note: Set True to eliminate randomness.
#     1. For one operation, cuDNN has several algorithms,
#        some algorithm results are non-deterministic, like convolution algorithms.
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})


def get_interp1d_mask(tscale, dscale, prop_boundary_ratio, num_sample,
                      num_sample_perbin):
    """ generate sample mask for each point in Boundary-Matching Map """
    mask_mat = []
    for start_index in range(tscale):
        mask_mat_vector = []
        for duration_index in range(dscale):
            if start_index + duration_index < tscale:
                p_xmin = start_index
                p_xmax = start_index + duration_index
                center_len = float(p_xmax - p_xmin) + 1
                sample_xmin = p_xmin - center_len * prop_boundary_ratio
                sample_xmax = p_xmax + center_len * prop_boundary_ratio
                p_mask = _get_interp1d_bin_mask(sample_xmin, sample_xmax,
                                                tscale, num_sample,
                                                num_sample_perbin)
            else:
                p_mask = np.zeros([tscale, num_sample])
            mask_mat_vector.append(p_mask)
        mask_mat_vector = np.stack(mask_mat_vector, axis=2)
        mask_mat.append(mask_mat_vector)
    mask_mat = np.stack(mask_mat, axis=3)
    mask_mat = mask_mat.astype(np.float32)

    sample_mask = np.reshape(mask_mat, [tscale, -1])
    return sample_mask


def _get_interp1d_bin_mask(seg_xmin, seg_xmax, tscale, num_sample,
                           num_sample_perbin):
    """ generate sample mask for a boundary-matching pair """
    plen = float(seg_xmax - seg_xmin)
    plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
    total_samples = [
        seg_xmin + plen_sample * ii
        for ii in range(num_sample * num_sample_perbin)
    ]
    p_mask = []
    for idx in range(num_sample):
        bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) *
                                    num_sample_perbin]
        bin_vector = np.zeros([tscale])
        for sample in bin_samples:
            sample_upper = math.ceil(sample)
            sample_decimal, sample_down = math.modf(sample)
            if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0:
                bin_vector[int(sample_down)] += 1 - sample_decimal
            if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0:
                bin_vector[int(sample_upper)] += sample_decimal
        bin_vector = 1.0 / num_sample_perbin * bin_vector
        p_mask.append(bin_vector)
    p_mask = np.stack(p_mask, axis=1)
    return p_mask


class Conv1D(fluid.dygraph.Layer):
    def __init__(self,
                 prefix,
                 num_channels=256,
                 num_filters=256,
                 size_k=3,
                 padding=1,
                 groups=1,
                 act="relu"):
        super(Conv1D, self).__init__()
        fan_in = num_channels * size_k * 1
        k = 1. / math.sqrt(fan_in)
        param_attr = ParamAttr(
            name=prefix + "_w",
            initializer=fluid.initializer.Uniform(
                low=-k, high=k))
        bias_attr = ParamAttr(
            name=prefix + "_b",
            initializer=fluid.initializer.Uniform(
                low=-k, high=k))

        self._conv2d = fluid.dygraph.Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=(1, size_k),
            stride=1,
            padding=(0, padding),
            groups=groups,
            act=act,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, x):
        x = fluid.layers.unsqueeze(input=x, axes=[2])
        x = self._conv2d(x)
        x = fluid.layers.squeeze(input=x, axes=[2])
        return x


class BMN(fluid.dygraph.Layer):
    def __init__(self, cfg):
        super(BMN, self).__init__()

        self.tscale = cfg.tscale
        self.dscale = cfg.dscale
        self.prop_boundary_ratio = cfg.prop_boundary_ratio
        self.num_sample = cfg.num_sample
        self.num_sample_perbin = cfg.num_sample_perbin

        self.hidden_dim_1d = 256
        self.hidden_dim_2d = 128
        self.hidden_dim_3d = 512

        # Base Module
        self.b_conv1 = Conv1D(
            prefix="Base_1",
            num_channels=cfg.feat_dim,
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.b_conv2 = Conv1D(
            prefix="Base_2",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")

        # Temporal Evaluation Module
        self.ts_conv1 = Conv1D(
            prefix="TEM_s1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.ts_conv2 = Conv1D(
            prefix="TEM_s2", num_filters=1, size_k=1, padding=0, act="sigmoid")
        self.te_conv1 = Conv1D(
            prefix="TEM_e1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu")
        self.te_conv2 = Conv1D(
            prefix="TEM_e2", num_filters=1, size_k=1, padding=0, act="sigmoid")

        #Proposal Evaluation Module
        self.p_conv1 = Conv1D(
            prefix="PEM_1d",
            num_filters=self.hidden_dim_2d,
            size_k=3,
            padding=1,
            act="relu")

        # init to speed up
190 191 192 193 194
        sample_mask = get_interp1d_mask(self.tscale, self.dscale,
                                        self.prop_boundary_ratio,
                                        self.num_sample, self.num_sample_perbin)
        self.sample_mask = fluid.dygraph.base.to_variable(sample_mask)
        self.sample_mask.stop_gradient = True
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        self.p_conv3d1 = fluid.dygraph.Conv3D(
            num_channels=128,
            num_filters=self.hidden_dim_3d,
            filter_size=(self.num_sample, 1, 1),
            stride=(self.num_sample, 1, 1),
            padding=0,
            act="relu",
            param_attr=ParamAttr(name="PEM_3d1_w"),
            bias_attr=ParamAttr(name="PEM_3d1_b"))

        self.p_conv2d1 = fluid.dygraph.Conv2D(
            num_channels=512,
            num_filters=self.hidden_dim_2d,
            filter_size=1,
            stride=1,
            padding=0,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d1_w"),
            bias_attr=ParamAttr(name="PEM_2d1_b"))
        self.p_conv2d2 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=self.hidden_dim_2d,
            filter_size=3,
            stride=1,
            padding=1,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d2_w"),
            bias_attr=ParamAttr(name="PEM_2d2_b"))
        self.p_conv2d3 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=self.hidden_dim_2d,
            filter_size=3,
            stride=1,
            padding=1,
            act="relu",
            param_attr=ParamAttr(name="PEM_2d3_w"),
            bias_attr=ParamAttr(name="PEM_2d3_b"))
        self.p_conv2d4 = fluid.dygraph.Conv2D(
            num_channels=128,
            num_filters=2,
            filter_size=1,
            stride=1,
            padding=0,
            act="sigmoid",
            param_attr=ParamAttr(name="PEM_2d4_w"),
            bias_attr=ParamAttr(name="PEM_2d4_b"))

    @declarative
    def forward(self, x):
        # Base Module
        x = self.b_conv1(x)
        x = self.b_conv2(x)

        # TEM
        xs = self.ts_conv1(x)
        xs = self.ts_conv2(xs)
        xs = fluid.layers.squeeze(xs, axes=[1])
        xe = self.te_conv1(x)
        xe = self.te_conv2(xe)
        xe = fluid.layers.squeeze(xe, axes=[1])

        # PEM
        xp = self.p_conv1(x)
        # BM layer
260
        xp = fluid.layers.matmul(xp, self.sample_mask)
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        xp = fluid.layers.reshape(
            xp, shape=[0, 0, -1, self.dscale, self.tscale])

        xp = self.p_conv3d1(xp)
        xp = fluid.layers.squeeze(xp, axes=[2])
        xp = self.p_conv2d1(xp)
        xp = self.p_conv2d2(xp)
        xp = self.p_conv2d3(xp)
        xp = self.p_conv2d4(xp)
        return xp, xs, xe


def bmn_loss_func(pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end,
                  cfg):
    def _get_mask(cfg):
        dscale = cfg.dscale
        tscale = cfg.tscale
        bm_mask = []
        for idx in range(dscale):
            mask_vector = [1 for i in range(tscale - idx)
                           ] + [0 for i in range(idx)]
            bm_mask.append(mask_vector)
        bm_mask = np.array(bm_mask, dtype=np.float32)
        self_bm_mask = fluid.layers.create_global_var(
            shape=[dscale, tscale], value=0, dtype=DATATYPE, persistable=True)
        fluid.layers.assign(bm_mask, self_bm_mask)
        self_bm_mask.stop_gradient = True
        return self_bm_mask

    def tem_loss_func(pred_start, pred_end, gt_start, gt_end):
        def bi_loss(pred_score, gt_label):
            pred_score = fluid.layers.reshape(
                x=pred_score, shape=[-1], inplace=False)
            gt_label = fluid.layers.reshape(
                x=gt_label, shape=[-1], inplace=False)
            gt_label.stop_gradient = True
            pmask = fluid.layers.cast(x=(gt_label > 0.5), dtype=DATATYPE)
            num_entries = fluid.layers.cast(
                fluid.layers.shape(pmask), dtype=DATATYPE)
            num_positive = fluid.layers.cast(
                fluid.layers.reduce_sum(pmask), dtype=DATATYPE)
            ratio = num_entries / num_positive
            coef_0 = 0.5 * ratio / (ratio - 1)
            coef_1 = 0.5 * ratio
            epsilon = 0.000001
            # temp = fluid.layers.log(pred_score + epsilon)
            loss_pos = fluid.layers.elementwise_mul(
                fluid.layers.log(pred_score + epsilon), pmask)
            loss_pos = coef_1 * fluid.layers.reduce_mean(loss_pos)
            loss_neg = fluid.layers.elementwise_mul(
                fluid.layers.log(1.0 - pred_score + epsilon), (1.0 - pmask))
            loss_neg = coef_0 * fluid.layers.reduce_mean(loss_neg)
            loss = -1 * (loss_pos + loss_neg)
            return loss

        loss_start = bi_loss(pred_start, gt_start)
        loss_end = bi_loss(pred_end, gt_end)
        loss = loss_start + loss_end
        return loss

    def pem_reg_loss_func(pred_score, gt_iou_map, mask):

        gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask)

        u_hmask = fluid.layers.cast(x=gt_iou_map > 0.7, dtype=DATATYPE)
        u_mmask = fluid.layers.logical_and(gt_iou_map <= 0.7, gt_iou_map > 0.3)
        u_mmask = fluid.layers.cast(x=u_mmask, dtype=DATATYPE)
        u_lmask = fluid.layers.logical_and(gt_iou_map <= 0.3, gt_iou_map >= 0.)
        u_lmask = fluid.layers.cast(x=u_lmask, dtype=DATATYPE)
        u_lmask = fluid.layers.elementwise_mul(u_lmask, mask)

        num_h = fluid.layers.cast(
            fluid.layers.reduce_sum(u_hmask), dtype=DATATYPE)
        num_m = fluid.layers.cast(
            fluid.layers.reduce_sum(u_mmask), dtype=DATATYPE)
        num_l = fluid.layers.cast(
            fluid.layers.reduce_sum(u_lmask), dtype=DATATYPE)

        r_m = num_h / num_m
        u_smmask = fluid.layers.assign(
            local_random.uniform(0., 1., [
                gt_iou_map.shape[1], gt_iou_map.shape[2]
            ]).astype(DATATYPE))
        u_smmask = fluid.layers.elementwise_mul(u_mmask, u_smmask)
        u_smmask = fluid.layers.cast(x=(u_smmask > (1. - r_m)), dtype=DATATYPE)

        r_l = num_h / num_l
        u_slmask = fluid.layers.assign(
            local_random.uniform(0., 1., [
                gt_iou_map.shape[1], gt_iou_map.shape[2]
            ]).astype(DATATYPE))
        u_slmask = fluid.layers.elementwise_mul(u_lmask, u_slmask)
        u_slmask = fluid.layers.cast(x=(u_slmask > (1. - r_l)), dtype=DATATYPE)

        weights = u_hmask + u_smmask + u_slmask
        weights.stop_gradient = True
        loss = fluid.layers.square_error_cost(pred_score, gt_iou_map)
        loss = fluid.layers.elementwise_mul(loss, weights)
        loss = 0.5 * fluid.layers.reduce_sum(loss) / fluid.layers.reduce_sum(
            weights)

        return loss

    def pem_cls_loss_func(pred_score, gt_iou_map, mask):
        gt_iou_map = fluid.layers.elementwise_mul(gt_iou_map, mask)
        gt_iou_map.stop_gradient = True
        pmask = fluid.layers.cast(x=(gt_iou_map > 0.9), dtype=DATATYPE)
        nmask = fluid.layers.cast(x=(gt_iou_map <= 0.9), dtype=DATATYPE)
        nmask = fluid.layers.elementwise_mul(nmask, mask)

        num_positive = fluid.layers.reduce_sum(pmask)
        num_entries = num_positive + fluid.layers.reduce_sum(nmask)
        ratio = num_entries / num_positive
        coef_0 = 0.5 * ratio / (ratio - 1)
        coef_1 = 0.5 * ratio
        epsilon = 0.000001
        loss_pos = fluid.layers.elementwise_mul(
            fluid.layers.log(pred_score + epsilon), pmask)
        loss_pos = coef_1 * fluid.layers.reduce_sum(loss_pos)
        loss_neg = fluid.layers.elementwise_mul(
            fluid.layers.log(1.0 - pred_score + epsilon), nmask)
        loss_neg = coef_0 * fluid.layers.reduce_sum(loss_neg)
        loss = -1 * (loss_pos + loss_neg) / num_entries
        return loss

    pred_bm_reg = fluid.layers.squeeze(
        fluid.layers.slice(
            pred_bm, axes=[1], starts=[0], ends=[1]), axes=[1])
    pred_bm_cls = fluid.layers.squeeze(
        fluid.layers.slice(
            pred_bm, axes=[1], starts=[1], ends=[2]), axes=[1])

    bm_mask = _get_mask(cfg)

    pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
    pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)

    tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end)

    loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
    return loss, tem_loss, pem_reg_loss, pem_cls_loss


class Args(object):
    epoch = 1
    batch_size = 4
    learning_rate = 0.1
    learning_rate_decay = 0.1
    lr_decay_iter = 4200
    l2_weight_decay = 1e-4
    valid_interval = 20
    log_interval = 5
    train_batch_num = valid_interval
    valid_batch_num = 5

    tscale = 50
    dscale = 50
    feat_dim = 100
    prop_boundary_ratio = 0.5
    num_sample = 2
    num_sample_perbin = 2
    infer_dir = './bmn_infer_model'
    dy_param_path = './bmn_dy_param'


def optimizer(cfg, parameter_list):
    bd = [cfg.lr_decay_iter]
    base_lr = cfg.learning_rate
    lr_decay = cfg.learning_rate_decay
    l2_weight_decay = cfg.l2_weight_decay
    lr = [base_lr, base_lr * lr_decay]
    optimizer = fluid.optimizer.Adam(
        fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        parameter_list=parameter_list,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=l2_weight_decay))
    return optimizer


def fake_data_reader(args, mode='train'):
    def iou_with_anchors(anchors_min, anchors_max, box_min, box_max):
        """Compute jaccard score between a box and the anchors.
        """
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
        inter_len = np.maximum(int_xmax - int_xmin, 0.)
        union_len = len_anchors - inter_len + box_max - box_min
        jaccard = np.divide(inter_len, union_len)
        return jaccard

    def ioa_with_anchors(anchors_min, anchors_max, box_min, box_max):
        """Compute intersection between score a box and the anchors.
        """
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
        inter_len = np.maximum(int_xmax - int_xmin, 0.)
        scores = np.divide(inter_len, len_anchors)
        return scores

    def get_match_map(tscale):
        match_map = []
        tgap = 1. / tscale
        for idx in range(tscale):
            tmp_match_window = []
            xmin = tgap * idx
            for jdx in range(1, tscale + 1):
                xmax = xmin + tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        match_map = match_map
        anchor_xmin = [tgap * i for i in range(tscale)]
        anchor_xmax = [tgap * i for i in range(1, tscale + 1)]

        return match_map, anchor_xmin, anchor_xmax

    def get_video_label(match_map, anchor_xmin, anchor_xmax):
        video_second = local_random.randint(75, 90)
        label_num = local_random.randint(1, 3)

        gt_bbox = []
        gt_iou_map = []
        for idx in range(label_num):
            duration = local_random.uniform(video_second * 0.4,
                                            video_second * 0.8)
            start_t = local_random.uniform(0.1 * video_second,
                                           video_second - duration)
            tmp_start = max(min(1, start_t / video_second), 0)
            tmp_end = max(min(1, (start_t + duration) / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
            tmp_gt_iou_map = iou_with_anchors(match_map[:, 0], match_map[:, 1],
                                              tmp_start, tmp_end)
            tmp_gt_iou_map = np.reshape(tmp_gt_iou_map,
                                        [args.dscale, args.tscale])
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
        gt_len_small = 3. / args.tscale
        gt_start_bboxs = np.stack(
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
        gt_end_bboxs = np.stack(
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1)

        match_score_start = []
        for jdx in range(len(anchor_xmin)):
            match_score_start.append(
                np.max(
                    ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[
                        jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1])))
        match_score_end = []
        for jdx in range(len(anchor_xmin)):
            match_score_end.append(
                np.max(
                    ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx],
                                     gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map, gt_start, gt_end

    def reader():
        batch_out = []
        iter_num = args.batch_size * 100
        match_map, anchor_xmin, anchor_xmax = get_match_map(args.tscale)

        for video_idx in range(iter_num):
            video_feat = local_random.random_sample(
                [args.feat_dim, args.tscale]).astype('float32')
            gt_iou_map, gt_start, gt_end = get_video_label(
                match_map, anchor_xmin, anchor_xmax)

            if mode == 'train' or mode == 'valid':
                batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
            elif mode == 'test':
                batch_out.append(
                    (video_feat, gt_iou_map, gt_start, gt_end, video_idx))
            else:
                raise NotImplementedError('mode {} not implemented'.format(
                    mode))
            if len(batch_out) == args.batch_size:
                yield batch_out
                batch_out = []

    return reader


def train_bmn(args, place, to_static):
    program_translator.enable(to_static)
    loss_data = []

    with fluid.dygraph.guard(place):
        fluid.default_main_program().random_seed = SEED
        fluid.default_startup_program().random_seed = SEED
        global local_random
        local_random = np.random.RandomState(SEED)

        bmn = BMN(args)
        adam = optimizer(args, parameter_list=bmn.parameters())

        train_reader = fake_data_reader(args, 'train')

        for epoch in range(args.epoch):
            for batch_id, data in enumerate(train_reader()):
                video_feat = np.array(
                    [item[0] for item in data]).astype(DATATYPE)
                gt_iou_map = np.array(
                    [item[1] for item in data]).astype(DATATYPE)
                gt_start = np.array([item[2] for item in data]).astype(DATATYPE)
                gt_end = np.array([item[3] for item in data]).astype(DATATYPE)

                x_data = to_variable(video_feat)
                gt_iou_map = to_variable(gt_iou_map)
                gt_start = to_variable(gt_start)
                gt_end = to_variable(gt_end)
                gt_iou_map.stop_gradient = True
                gt_start.stop_gradient = True
                gt_end.stop_gradient = True

                pred_bm, pred_start, pred_end = bmn(x_data)

                loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
                    pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end,
                    args)
                avg_loss = fluid.layers.mean(loss)

                avg_loss.backward()
                adam.minimize(avg_loss)
                bmn.clear_gradients()
                # log loss data to verify correctness
                loss_data += [
                    avg_loss.numpy()[0], tem_loss.numpy()[0],
                    pem_reg_loss.numpy()[0], pem_cls_loss.numpy()[0]
                ]

                if args.log_interval > 0 and (
                        batch_id % args.log_interval == 0):
                    print('[TRAIN] Epoch {}, iter {} '.format(epoch, batch_id)
                                + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
                        '%f' % avg_loss.numpy()[0], '%f' % tem_loss.numpy()[0], \
                        '%f' % pem_reg_loss.numpy()[0], '%f' % pem_cls_loss.numpy()[0]))

                # validation
                if batch_id % args.valid_interval == 0 and batch_id > 0:
                    bmn.eval()
                    val_loss_data = val_bmn(bmn, args)
                    bmn.train()
                    loss_data += val_loss_data

                if batch_id == args.train_batch_num:
                    if to_static:
620
                        fluid.dygraph.jit.save(bmn, args.infer_dir)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                    else:
                        fluid.dygraph.save_dygraph(bmn.state_dict(),
                                                   args.dy_param_path)
                    break
        return np.array(loss_data)


# Validation
def val_bmn(model, args):
    val_reader = fake_data_reader(args, 'valid')

    loss_data = []
    for batch_id, data in enumerate(val_reader()):
        video_feat = np.array([item[0] for item in data]).astype(DATATYPE)
        gt_iou_map = np.array([item[1] for item in data]).astype(DATATYPE)
        gt_start = np.array([item[2] for item in data]).astype(DATATYPE)
        gt_end = np.array([item[3] for item in data]).astype(DATATYPE)

        x_data = to_variable(video_feat)
        gt_iou_map = to_variable(gt_iou_map)
        gt_start = to_variable(gt_start)
        gt_end = to_variable(gt_end)
        gt_iou_map.stop_gradient = True
        gt_start.stop_gradient = True
        gt_end.stop_gradient = True

        pred_bm, pred_start, pred_end = model(x_data)

        loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
            pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, args)
        avg_loss = fluid.layers.mean(loss)

        loss_data += [
            avg_loss.numpy()[0], tem_loss.numpy()[0], pem_reg_loss.numpy()[0],
            pem_cls_loss.numpy()[0]
        ]

        print('[VALID] iter {} '.format(batch_id)
                    + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
            '%f' % avg_loss.numpy()[0], '%f' % tem_loss.numpy()[0], \
            '%f' % pem_reg_loss.numpy()[0], '%f' % pem_cls_loss.numpy()[0]))

        if batch_id == args.valid_batch_num:
            break
    return loss_data


class TestTrain(unittest.TestCase):
    def setUp(self):
        self.args = Args()
        self.place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda() \
            else fluid.CUDAPlace(0)

    def test_train(self):

        static_res = train_bmn(self.args, self.place, to_static=True)
        dygraph_res = train_bmn(self.args, self.place, to_static=False)
        self.assertTrue(
            np.allclose(dygraph_res, static_res),
            "dygraph_res: {},\n static_res: {}".format(
                dygraph_res[~np.isclose(dygraph_res, static_res)],
                static_res[~np.isclose(dygraph_res, static_res)]))

        # Prediction needs trained models, so put `test_predict` at last of `test_train`
        self.verify_predict()

    def verify_predict(self):
        args = Args()
        args.batch_size = 1  # change batch_size
        test_reader = fake_data_reader(args, 'test')
        for batch_id, data in enumerate(test_reader()):
            video_data = np.array([item[0] for item in data]).astype(DATATYPE)
            static_pred_res = self.predict_static(video_data)
            dygraph_pred_res = self.predict_dygraph(video_data)
695
            dygraph_jit_pred_res = self.predict_dygraph_jit(video_data)
696

697 698
            for dy_res, st_res, dy_jit_res in zip(
                    dygraph_pred_res, static_pred_res, dygraph_jit_pred_res):
699 700 701 702 703
                self.assertTrue(
                    np.allclose(st_res, dy_res),
                    "dygraph_res: {},\n static_res: {}".format(
                        dy_res[~np.isclose(st_res, dy_res)],
                        st_res[~np.isclose(st_res, dy_res)]))
704 705 706 707 708
                self.assertTrue(
                    np.allclose(st_res, dy_jit_res),
                    "dygraph_jit_res: {},\n static_res: {}".format(
                        dy_jit_res[~np.isclose(st_res, dy_jit_res)],
                        st_res[~np.isclose(st_res, dy_jit_res)]))
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
            break

    def predict_dygraph(self, data):
        program_translator.enable(False)
        with fluid.dygraph.guard(self.place):
            bmn = BMN(self.args)
            # load dygraph trained parameters
            model_dict, _ = fluid.load_dygraph(self.args.dy_param_path +
                                               ".pdparams")
            bmn.set_dict(model_dict)
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

    def predict_static(self, data):
        exe = fluid.Executor(self.place)
        # load inference model
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
732 733 734
             self.args.infer_dir,
             executor=exe,
             params_filename=VARIABLE_FILENAME)
735 736 737 738 739 740
        pred_res = exe.run(inference_program,
                           feed={feed_target_names[0]: data},
                           fetch_list=fetch_targets)

        return pred_res

741 742 743 744 745 746 747 748 749 750 751
    def predict_dygraph_jit(self, data):
        with fluid.dygraph.guard(self.place):
            bmn = fluid.dygraph.jit.load(self.args.infer_dir)
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

752 753 754

if __name__ == "__main__":
    unittest.main()