未验证 提交 ce72023c 编写于 作者: Z zhoujun 提交者: GitHub

Merge pull request #7832 from zhiminzhang0830/drrg_branch

add text detection algorithm DRRG
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/det_r50_drrg_ctw/
save_epoch_step: 100
# evaluation is run every 1260 iterations
eval_batch_step: [37800, 1260]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained.pdparams
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_drrg/predicts_drrg.txt
Architecture:
model_type: det
algorithm: DRRG
Transform:
Backbone:
name: ResNet_vd
layers: 50
Neck:
name: FPN_UNet
in_channels: [256, 512, 1024, 2048]
out_channels: 32
Head:
name: DRRGHead
in_channels: 32
text_region_thr: 0.3
center_region_thr: 0.4
Loss:
name: DRRGLoss
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: DecayLearningRate
learning_rate: 0.028
epochs: 1200
factor: 0.9
end_lr: 0.0000001
weight_decay: 0.0001
PostProcess:
name: DRRGPostprocess
link_thr: 0.8
Metric:
name: DetFCEMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ctw1500/imgs/
label_file_list:
- ./train_data/ctw1500/imgs/training.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
ignore_orientation: True
- DetLabelEncode: # Class handling label
- ColorJitter:
brightness: 0.12549019607843137
saturation: 0.5
- RandomScaling:
- RandomCropFlip:
crop_ratio: 0.5
- RandomCropPolyInstances:
crop_ratio: 0.8
min_side_ratio: 0.3
- RandomRotatePolyInstances:
rotate_ratio: 0.5
max_angle: 60
pad_with_fixed_color: False
- SquareResizePad:
target_size: 800
pad_ratio: 0.6
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- DRRGTargets:
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
'gt_top_height_map', 'gt_bot_height_map', 'gt_sin_map',
'gt_cos_map', 'gt_comp_attribs'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ctw1500/imgs/
label_file_list:
- ./train_data/ctw1500/imgs/test.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
ignore_orientation: True
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_type: 'min'
limit_side_len: 640
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- Pad:
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
\ No newline at end of file
# DRRG
- [1. 算法简介](#1-算法简介)
- [2. 环境配置](#2-环境配置)
- [3. 模型训练、评估、预测](#3-模型训练评估预测)
- [4. 推理部署](#4-推理部署)
- [4.1 Python推理](#41-python推理)
- [4.2 C++推理](#42-c推理)
- [4.3 Serving服务化部署](#43-serving服务化部署)
- [4.4 更多推理部署](#44-更多推理部署)
- [5. FAQ](#5-faq)
- [引用](#引用)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493)
> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng
> CVPR, 2020
在CTW1500文本检测公开数据集上,算法复现效果如下:
| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接|
|-----| --- | --- | --- | --- | --- | --- |
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
上述DRRG模型使用CTW1500文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)
数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
由于模型前向运行时需要多次转换为Numpy数据进行运算,因此DRRG的动态图转静态图暂未支持。
<a name="4-2"></a>
### 4.2 C++推理
暂未支持
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂未支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂未支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@inproceedings{zhang2020deep,
title={Deep relational reasoning graph network for arbitrary shape text detection},
author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9699--9708},
year={2020}
}
```
......@@ -29,6 +29,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
- [x] [SAST](./algorithm_det_sast.md)
- [x] [PSENet](./algorithm_det_psenet.md)
- [x] [FCENet](./algorithm_det_fcenet.md)
- [x] [DRRG](./algorithm_det_drrg.md)
在ICDAR2015文本检测公开数据集上,算法效果如下:
......@@ -54,6 +55,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
|模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
......
# DRRG
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. Introduction
Paper:
> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493)
> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng
> CVPR, 2020
On the CTW1500 dataset, the text detection result is as follows:
|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
<a name="2"></a>
## 2. Environment
Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).
<a name="3"></a>
## 3. Model Training / Evaluation / Prediction
The above DRRG model is trained using the CTW1500 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
<a name="4"></a>
## 4. Inference and Deployment
<a name="4-1"></a>
### 4.1 Python Inference
Since the model needs to be converted to Numpy data for many times in the forward, DRRG dynamic graph to static graph is not supported.
<a name="4-2"></a>
### 4.2 C++ Inference
Not supported
<a name="4-3"></a>
### 4.3 Serving
Not supported
<a name="4-4"></a>
### 4.4 More
Not supported
<a name="5"></a>
## 5. FAQ
## Citation
```bibtex
@inproceedings{zhang2020deep,
title={Deep relational reasoning graph network for arbitrary shape text detection},
author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9699--9708},
year={2020}
}
```
......@@ -27,6 +27,7 @@ Supported text detection algorithms (Click the link to get the tutorial):
- [x] [SAST](./algorithm_det_sast_en.md)
- [x] [PSENet](./algorithm_det_psenet_en.md)
- [x] [FCENet](./algorithm_det_fcenet_en.md)
- [x] [DRRG](./algorithm_det_drrg_en.md)
On the ICDAR2015 dataset, the text detection result is as follows:
......@@ -52,6 +53,7 @@ On CTW1500 dataset, the text detection result is as follows:
|Model|Backbone|Precision|Recall|Hmean| Download link|
| --- | --- | --- | --- | --- |---|
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%| [trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) |
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
* [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
......
......@@ -45,6 +45,7 @@ from .vqa import *
from .fce_aug import *
from .fce_targets import FCENetTargets
from .ct_process import *
from .drrg_targets import DRRGTargets
def transform(data, ops=None):
......
此差异已折叠。
from .roi_align_rotated.roi_align_rotated import RoIAlignRotated
// This code is refer from:
// https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp
#include <cassert>
#include <cmath>
#include <vector>
#include "paddle/extension.h"
#define PADDLE_WITH_CUDA
#define CHECK_INPUT_SAME(x1, x2) \
PD_CHECK(x1.place() == x2.place(), "input must be smae pacle.")
#define CHECK_INPUT_CPU(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")
template <typename T> struct PreCalc {
int pos1;
int pos2;
int pos3;
int pos4;
T w1;
T w2;
T w3;
T w4;
};
template <typename T>
void pre_calc_for_bilinear_interpolate(
const int height, const int width, const int pooled_height,
const int pooled_width, const int iy_upper, const int ix_upper,
T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
int roi_bin_grid_h, int roi_bin_grid_w, T roi_center_h, T roi_center_w,
T cos_theta, T sin_theta, std::vector<PreCalc<T>> &pre_calc) {
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
for (int iy = 0; iy < iy_upper; iy++) {
const T yy = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < ix_upper; ix++) {
const T xx = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
// Rotate by theta around the center and translate
// In image space, (y, x) is the order for Right Handed System,
// and this is essentially multiplying the point by a rotation matrix
// to rotate it counterclockwise through angle theta.
T y = yy * cos_theta - xx * sin_theta + roi_center_h;
T x = yy * sin_theta + xx * cos_theta + roi_center_w;
// deal with: inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
PreCalc<T> pc;
pc.pos1 = 0;
pc.pos2 = 0;
pc.pos3 = 0;
pc.pos4 = 0;
pc.w1 = 0;
pc.w2 = 0;
pc.w3 = 0;
pc.w4 = 0;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
continue;
}
if (y < 0) {
y = 0;
}
if (x < 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
// save weights and indices
PreCalc<T> pc;
pc.pos1 = y_low * width + x_low;
pc.pos2 = y_low * width + x_high;
pc.pos3 = y_high * width + x_low;
pc.pos4 = y_high * width + x_high;
pc.w1 = w1;
pc.w2 = w2;
pc.w3 = w3;
pc.w4 = w4;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
}
}
}
}
}
template <typename T>
void roi_align_rotated_cpu_forward(const int nthreads, const T *input,
const T &spatial_scale, const bool aligned,
const bool clockwise, const int channels,
const int height, const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio, const T *rois,
T *output) {
int n_rois = nthreads / channels / pooled_width / pooled_height;
// (n, c, ph, pw) is an element in the pooled output
// can be parallelized using omp
// #pragma omp parallel for num_threads(32)
for (int n = 0; n < n_rois; n++) {
int index_n = n * channels * pooled_width * pooled_height;
const T *current_roi = rois + n * 6;
int roi_batch_ind = current_roi[0];
// Do not use rounding; this implementation detail is critical
T offset = aligned ? (T)0.5 : (T)0.0;
T roi_center_w = current_roi[1] * spatial_scale - offset;
T roi_center_h = current_roi[2] * spatial_scale - offset;
T roi_width = current_roi[3] * spatial_scale;
T roi_height = current_roi[4] * spatial_scale;
T theta = current_roi[5];
if (clockwise) {
theta = -theta; // If clockwise, the angle needs to be reversed.
}
T cos_theta = cos(theta);
T sin_theta = sin(theta);
if (aligned) {
assert(roi_width >= 0 && roi_height >= 0);
} else { // for backward-compatibility only
roi_width = std::max(roi_width, (T)1.);
roi_height = std::max(roi_height, (T)1.);
}
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceilf(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
// we want to precalculate indices and weights shared by all channels,
// this is the key point of optimization
std::vector<PreCalc<T>> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
pooled_width * pooled_height);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
T roi_start_h = -roi_height / 2.0;
T roi_start_w = -roi_width / 2.0;
pre_calc_for_bilinear_interpolate(
height, width, pooled_height, pooled_width, roi_bin_grid_h,
roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
roi_bin_grid_h, roi_bin_grid_w, roi_center_h, roi_center_w, cos_theta,
sin_theta, pre_calc);
for (int c = 0; c < channels; c++) {
int index_n_c = index_n + c * pooled_width * pooled_height;
const T *offset_input =
input + (roi_batch_ind * channels + c) * height * width;
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
int index = index_n_c + ph * pooled_width + pw;
T output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
PreCalc<T> pc = pre_calc[pre_calc_index];
output_val += pc.w1 * offset_input[pc.pos1] +
pc.w2 * offset_input[pc.pos2] +
pc.w3 * offset_input[pc.pos3] +
pc.w4 * offset_input[pc.pos4];
pre_calc_index += 1;
}
}
output_val /= count;
output[index] = output_val;
} // for pw
} // for ph
} // for c
} // for n
}
template <typename T>
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
T &w1, T &w2, T &w3, T &w4, int &x_low,
int &x_high, int &y_low, int &y_high) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y < 0) {
y = 0;
}
if (x < 0) {
x = 0;
}
y_low = (int)y;
x_low = (int)x;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// reference in forward
// T v1 = input[y_low * width + x_low];
// T v2 = input[y_low * width + x_high];
// T v3 = input[y_high * width + x_low];
// T v4 = input[y_high * width + x_high];
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
template <class T> inline void add(T *address, const T &val) {
*address += val;
}
template <typename T>
void roi_align_rotated_cpu_backward(
const int nthreads,
// may not be contiguous. should index using n_stride, etc
const T *grad_output, const T &spatial_scale, const bool aligned,
const bool clockwise, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, const int sampling_ratio,
T *grad_input, const T *rois, const int n_stride, const int c_stride,
const int h_stride, const int w_stride) {
for (int index = 0; index < nthreads; index++) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T *current_roi = rois + n * 6;
int roi_batch_ind = current_roi[0];
// Do not use rounding; this implementation detail is critical
T offset = aligned ? (T)0.5 : (T)0.0;
T roi_center_w = current_roi[1] * spatial_scale - offset;
T roi_center_h = current_roi[2] * spatial_scale - offset;
T roi_width = current_roi[3] * spatial_scale;
T roi_height = current_roi[4] * spatial_scale;
T theta = current_roi[5];
if (clockwise) {
theta = -theta; // If clockwise, the angle needs to be reversed.
}
T cos_theta = cos(theta);
T sin_theta = sin(theta);
if (aligned) {
assert(roi_width >= 0 && roi_height >= 0);
} else { // for backward-compatibility only
roi_width = std::max(roi_width, (T)1.);
roi_height = std::max(roi_height, (T)1.);
}
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
T *offset_grad_input =
grad_input + ((roi_batch_ind * channels + c) * height * width);
int output_offset = n * n_stride + c * c_stride;
const T *offset_grad_output = grad_output + output_offset;
const T grad_output_this_bin =
offset_grad_output[ph * h_stride + pw * w_stride];
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceilf(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
T roi_start_h = -roi_height / 2.0;
T roi_start_w = -roi_width / 2.0;
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
const T yy = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T xx = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
// Rotate by theta around the center and translate
T y = yy * cos_theta - xx * sin_theta + roi_center_h;
T x = yy * sin_theta + xx * cos_theta + roi_center_w;
T w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
x_low, x_high, y_low, y_high);
T g1 = grad_output_this_bin * w1 / count;
T g2 = grad_output_this_bin * w2 / count;
T g3 = grad_output_this_bin * w3 / count;
T g4 = grad_output_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
// atomic add is not needed for now since it is single threaded
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
} // if
} // ix
} // iy
} // for
} // ROIAlignRotatedBackward
std::vector<paddle::Tensor>
RoIAlignRotatedCPUForward(const paddle::Tensor &input,
const paddle::Tensor &rois, int aligned_height,
int aligned_width, float spatial_scale,
int sampling_ratio, bool aligned, bool clockwise) {
CHECK_INPUT_CPU(input);
CHECK_INPUT_CPU(rois);
auto num_rois = rois.shape()[0];
auto channels = input.shape()[1];
auto height = input.shape()[2];
auto width = input.shape()[3];
auto output =
paddle::empty({num_rois, channels, aligned_height, aligned_width},
input.type(), paddle::CPUPlace());
auto output_size = output.numel();
PD_DISPATCH_FLOATING_TYPES(
input.type(), "roi_align_rotated_cpu_forward", ([&] {
roi_align_rotated_cpu_forward<data_t>(
output_size, input.data<data_t>(),
static_cast<data_t>(spatial_scale), aligned, clockwise, channels,
height, width, aligned_height, aligned_width, sampling_ratio,
rois.data<data_t>(), output.data<data_t>());
}));
return {output};
}
std::vector<paddle::Tensor> RoIAlignRotatedCPUBackward(
const paddle::Tensor &input, const paddle::Tensor &rois,
const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) {
auto batch_size = input.shape()[0];
auto channels = input.shape()[1];
auto height = input.shape()[2];
auto width = input.shape()[3];
auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0,
input.type(), paddle::CPUPlace());
// get stride values to ensure indexing into gradients is correct.
int n_stride = grad_output.shape()[0];
int c_stride = grad_output.shape()[1];
int h_stride = grad_output.shape()[2];
int w_stride = grad_output.shape()[3];
PD_DISPATCH_FLOATING_TYPES(
grad_output.type(), "roi_align_rotated_cpu_backward", [&] {
roi_align_rotated_cpu_backward<data_t>(
grad_output.numel(), grad_output.data<data_t>(),
static_cast<data_t>(spatial_scale), aligned, clockwise, channels,
height, width, aligned_height, aligned_width, sampling_ratio,
grad_input.data<data_t>(), rois.data<data_t>(), n_stride, c_stride,
h_stride, w_stride);
});
return {grad_input};
}
#ifdef PADDLE_WITH_CUDA
std::vector<paddle::Tensor>
RoIAlignRotatedCUDAForward(const paddle::Tensor &input,
const paddle::Tensor &rois, int aligned_height,
int aligned_width, float spatial_scale,
int sampling_ratio, bool aligned, bool clockwise);
#endif
#ifdef PADDLE_WITH_CUDA
std::vector<paddle::Tensor> RoIAlignRotatedCUDABackward(
const paddle::Tensor &input, const paddle::Tensor &rois,
const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
float spatial_scale, int sampling_ratio, bool aligned, bool clockwise);
#endif
std::vector<paddle::Tensor>
RoIAlignRotatedForward(const paddle::Tensor &input, const paddle::Tensor &rois,
int aligned_height, int aligned_width,
float spatial_scale, int sampling_ratio, bool aligned,
bool clockwise) {
CHECK_INPUT_SAME(input, rois);
if (input.is_cpu()) {
return RoIAlignRotatedCPUForward(input, rois, aligned_height, aligned_width,
spatial_scale, sampling_ratio, aligned,
clockwise);
#ifdef PADDLE_WITH_CUDA
} else if (input.is_gpu()) {
return RoIAlignRotatedCUDAForward(input, rois, aligned_height,
aligned_width, spatial_scale,
sampling_ratio, aligned, clockwise);
#endif
} else {
PD_THROW("Unsupported device type for forward function of roi align "
"rotated operator.");
}
}
std::vector<paddle::Tensor>
RoIAlignRotatedBackward(const paddle::Tensor &input, const paddle::Tensor &rois,
const paddle::Tensor &grad_output, int aligned_height,
int aligned_width, float spatial_scale,
int sampling_ratio, bool aligned, bool clockwise) {
CHECK_INPUT_SAME(input, rois);
if (input.is_cpu()) {
return RoIAlignRotatedCPUBackward(input, rois, grad_output, aligned_height,
aligned_width, spatial_scale,
sampling_ratio, aligned, clockwise);
#ifdef PADDLE_WITH_CUDA
} else if (input.is_gpu()) {
return RoIAlignRotatedCUDABackward(input, rois, grad_output, aligned_height,
aligned_width, spatial_scale,
sampling_ratio, aligned, clockwise);
#endif
} else {
PD_THROW("Unsupported device type for forward function of roi align "
"rotated operator.");
}
}
std::vector<std::vector<int64_t>> InferShape(std::vector<int64_t> input_shape,
std::vector<int64_t> rois_shape) {
return {{rois_shape[0], input_shape[1], input_shape[2], input_shape[3]}};
}
std::vector<std::vector<int64_t>>
InferBackShape(std::vector<int64_t> input_shape,
std::vector<int64_t> rois_shape) {
return {input_shape};
}
std::vector<paddle::DataType> InferDtype(paddle::DataType input_dtype,
paddle::DataType rois_dtype) {
return {input_dtype};
}
PD_BUILD_OP(roi_align_rotated)
.Inputs({"Input", "Rois"})
.Outputs({"Output"})
.Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float",
"sampling_ratio: int", "aligned: bool", "clockwise: bool"})
.SetKernelFn(PD_KERNEL(RoIAlignRotatedForward))
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(InferDtype));
PD_BUILD_GRAD_OP(roi_align_rotated)
.Inputs({"Input", "Rois", paddle::Grad("Output")})
.Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float",
"sampling_ratio: int", "aligned: bool", "clockwise: bool"})
.Outputs({paddle::Grad("Input")})
.SetKernelFn(PD_KERNEL(RoIAlignRotatedBackward))
.SetInferShapeFn(PD_INFER_SHAPE(InferBackShape));
// This code is refer from:
// https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh
#include <cassert>
#include <cmath>
#include <vector>
#include "paddle/extension.h"
#include <cuda.h>
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
#define THREADS_PER_BLOCK 512
inline int GET_BLOCKS(const int N) {
int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
int max_block_num = 4096;
return min(optimal_block_num, max_block_num);
}
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600
static __inline__ __device__ double atomicAdd(double *address, double val) {
unsigned long long int *address_as_ull = (unsigned long long int *)address;
unsigned long long int old = *address_as_ull, assumed;
if (val == 0.0)
return __longlong_as_double(old);
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
template <typename T>
__device__ T bilinear_interpolate(const T *input, const int height,
const int width, T y, T x,
const int index /* index for debug only*/) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width)
return 0;
if (y <= 0)
y = 0;
if (x <= 0)
x = 0;
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// do bilinear interpolation
T v1 = input[y_low * width + x_low];
T v2 = input[y_low * width + x_high];
T v3 = input[y_high * width + x_low];
T v4 = input[y_high * width + x_high];
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename T>
__device__ void
bilinear_interpolate_gradient(const int height, const int width, T y, T x,
T &w1, T &w2, T &w3, T &w4, int &x_low,
int &x_high, int &y_low, int &y_high,
const int index /* index for debug only*/) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y <= 0)
y = 0;
if (x <= 0)
x = 0;
y_low = (int)y;
x_low = (int)x;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// reference in forward
// T v1 = input[y_low * width + x_low];
// T v2 = input[y_low * width + x_high];
// T v3 = input[y_high * width + x_low];
// T v4 = input[y_high * width + x_high];
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
/*** Forward ***/
template <typename scalar_t>
__global__ void roi_align_rotated_cuda_forward_kernel(
const int nthreads, const scalar_t *bottom_data,
const scalar_t *bottom_rois, const scalar_t spatial_scale,
const int sample_num, const bool aligned, const bool clockwise,
const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, scalar_t *top_data) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
int roi_batch_ind = offset_bottom_rois[0];
// Do not using rounding; this implementation detail is critical
scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
// scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
scalar_t theta = offset_bottom_rois[5];
if (clockwise) {
theta = -theta; // If clockwise, the angle needs to be reversed.
}
if (!aligned) { // for backward-compatibility only
// Force malformed ROIs to be 1x1
roi_width = max(roi_width, (scalar_t)1.);
roi_height = max(roi_height, (scalar_t)1.);
}
scalar_t bin_size_h = static_cast<scalar_t>(roi_height) /
static_cast<scalar_t>(pooled_height);
scalar_t bin_size_w =
static_cast<scalar_t>(roi_width) / static_cast<scalar_t>(pooled_width);
const scalar_t *offset_bottom_data =
bottom_data + (roi_batch_ind * channels + c) * height * width;
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sample_num > 0)
? sample_num
: ceilf(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
scalar_t roi_start_h = -roi_height / 2.0;
scalar_t roi_start_w = -roi_width / 2.0;
scalar_t cosscalar_theta = cos(theta);
scalar_t sinscalar_theta = sin(theta);
// We do average (integral) pooling inside a bin
const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
scalar_t output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1
const scalar_t yy =
roi_start_h + ph * bin_size_h +
static_cast<scalar_t>(iy + .5f) * bin_size_h /
static_cast<scalar_t>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const scalar_t xx = roi_start_w + pw * bin_size_w +
static_cast<scalar_t>(ix + .5f) * bin_size_w /
static_cast<scalar_t>(roi_bin_grid_w);
// Rotate by theta (counterclockwise) around the center and translate
scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h;
scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w;
scalar_t val = bilinear_interpolate<scalar_t>(
offset_bottom_data, height, width, y, x, index);
output_val += val;
}
}
output_val /= count;
top_data[index] = output_val;
}
}
/*** Backward ***/
template <typename scalar_t>
__global__ void roi_align_rotated_backward_cuda_kernel(
const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois,
const scalar_t spatial_scale, const int sample_num, const bool aligned,
const bool clockwise, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, scalar_t *bottom_diff) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
int roi_batch_ind = offset_bottom_rois[0];
// Do not round
scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
// scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
scalar_t theta = offset_bottom_rois[5];
if (clockwise) {
theta = -theta; // If clockwise, the angle needs to be reversed.
}
if (!aligned) { // for backward-compatibility only
// Force malformed ROIs to be 1x1
roi_width = max(roi_width, (scalar_t)1.);
roi_height = max(roi_height, (scalar_t)1.);
}
scalar_t bin_size_h = static_cast<scalar_t>(roi_height) /
static_cast<scalar_t>(pooled_height);
scalar_t bin_size_w =
static_cast<scalar_t>(roi_width) / static_cast<scalar_t>(pooled_width);
scalar_t *offset_bottom_diff =
bottom_diff + (roi_batch_ind * channels + c) * height * width;
int top_offset = (n * channels + c) * pooled_height * pooled_width;
const scalar_t *offset_top_diff = top_diff + top_offset;
const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sample_num > 0)
? sample_num
: ceilf(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width);
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
// Appropriate translation needs to be applied after.
scalar_t roi_start_h = -roi_height / 2.0;
scalar_t roi_start_w = -roi_width / 2.0;
scalar_t cosTheta = cos(theta);
scalar_t sinTheta = sin(theta);
// We do average (integral) pooling inside a bin
const scalar_t count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1
const scalar_t yy =
roi_start_h + ph * bin_size_h +
static_cast<scalar_t>(iy + .5f) * bin_size_h /
static_cast<scalar_t>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const scalar_t xx = roi_start_w + pw * bin_size_w +
static_cast<scalar_t>(ix + .5f) * bin_size_w /
static_cast<scalar_t>(roi_bin_grid_w);
// Rotate by theta around the center and translate
scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h;
scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w;
scalar_t w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient<scalar_t>(height, width, y, x, w1, w2, w3,
w4, x_low, x_high, y_low,
y_high, index);
scalar_t g1 = top_diff_this_bin * w1 / count;
scalar_t g2 = top_diff_this_bin * w2 / count;
scalar_t g3 = top_diff_this_bin * w3 / count;
scalar_t g4 = top_diff_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
atomicAdd(offset_bottom_diff + y_low * width + x_low, g1);
atomicAdd(offset_bottom_diff + y_low * width + x_high, g2);
atomicAdd(offset_bottom_diff + y_high * width + x_low, g3);
atomicAdd(offset_bottom_diff + y_high * width + x_high, g4);
} // if
} // ix
} // iy
} // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward
std::vector<paddle::Tensor>
RoIAlignRotatedCUDAForward(const paddle::Tensor &input,
const paddle::Tensor &rois, int aligned_height,
int aligned_width, float spatial_scale,
int sampling_ratio, bool aligned, bool clockwise) {
auto num_rois = rois.shape()[0];
auto channels = input.shape()[1];
auto height = input.shape()[2];
auto width = input.shape()[3];
auto output =
paddle::empty({num_rois, channels, aligned_height, aligned_width},
input.type(), paddle::GPUPlace());
auto output_size = output.numel();
PD_DISPATCH_FLOATING_TYPES(
input.type(), "roi_align_rotated_cuda_forward_kernel", ([&] {
roi_align_rotated_cuda_forward_kernel<
data_t><<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>(
output_size, input.data<data_t>(), rois.data<data_t>(),
static_cast<data_t>(spatial_scale), sampling_ratio, aligned,
clockwise, channels, height, width, aligned_height, aligned_width,
output.data<data_t>());
}));
return {output};
}
std::vector<paddle::Tensor> RoIAlignRotatedCUDABackward(
const paddle::Tensor &input, const paddle::Tensor &rois,
const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) {
auto num_rois = rois.shape()[0];
auto batch_size = input.shape()[0];
auto channels = input.shape()[1];
auto height = input.shape()[2];
auto width = input.shape()[3];
auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0,
input.type(), paddle::GPUPlace());
const int output_size = num_rois * aligned_height * aligned_width * channels;
PD_DISPATCH_FLOATING_TYPES(
grad_output.type(), "roi_align_rotated_backward_cuda_kernel", ([&] {
roi_align_rotated_backward_cuda_kernel<
data_t><<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>(
output_size, grad_output.data<data_t>(), rois.data<data_t>(),
spatial_scale, sampling_ratio, aligned, clockwise, channels, height,
width, aligned_height, aligned_width, grad_input.data<data_t>());
}));
return {grad_input};
}
\ No newline at end of file
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/roi_align_rotated.py
"""
import paddle
import paddle.nn as nn
from paddle.utils.cpp_extension import load
custom_ops = load(
name="custom_jit_ops",
sources=[
"ppocr/ext_op/roi_align_rotated/roi_align_rotated.cc",
"ppocr/ext_op/roi_align_rotated/roi_align_rotated.cu"
])
roi_align_rotated = custom_ops.roi_align_rotated
class RoIAlignRotated(nn.Layer):
"""RoI align pooling layer for rotated proposals.
"""
def __init__(self,
out_size,
spatial_scale,
sample_num=0,
aligned=True,
clockwise=False):
super(RoIAlignRotated, self).__init__()
if isinstance(out_size, int):
self.out_h = out_size
self.out_w = out_size
elif isinstance(out_size, tuple):
assert len(out_size) == 2
assert isinstance(out_size[0], int)
assert isinstance(out_size[1], int)
self.out_h, self.out_w = out_size
else:
raise TypeError(
'"out_size" must be an integer or tuple of integers')
self.spatial_scale = float(spatial_scale)
self.sample_num = int(sample_num)
self.aligned = aligned
self.clockwise = clockwise
def forward(self, feats, rois):
output = roi_align_rotated(feats, rois, self.out_h, self.out_w,
self.spatial_scale, self.sample_num,
self.aligned, self.clockwise)
return output
......@@ -26,6 +26,7 @@ from .det_sast_loss import SASTLoss
from .det_pse_loss import PSELoss
from .det_fce_loss import FCELoss
from .det_ct_loss import CTLoss
from .det_drrg_loss import DRRGLoss
# rec loss
from .rec_ctc_loss import CTCLoss
......@@ -70,7 +71,7 @@ def build_loss(config):
'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss',
'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss',
'TableMasterLoss', 'SPINAttentionLoss', 'VLLoss', 'StrokeFocusLoss',
'SLALoss', 'CTLoss', 'RFLLoss'
'SLALoss', 'CTLoss', 'RFLLoss', 'DRRGLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/drrg_loss.py
"""
import paddle
import paddle.nn.functional as F
from paddle import nn
class DRRGLoss(nn.Layer):
def __init__(self, ohem_ratio=3.0):
super().__init__()
self.ohem_ratio = ohem_ratio
self.downsample_ratio = 1.0
def balance_bce_loss(self, pred, gt, mask):
"""Balanced Binary-CrossEntropy Loss.
Args:
pred (Tensor): Shape of :math:`(1, H, W)`.
gt (Tensor): Shape of :math:`(1, H, W)`.
mask (Tensor): Shape of :math:`(1, H, W)`.
Returns:
Tensor: Balanced bce loss.
"""
assert pred.shape == gt.shape == mask.shape
assert paddle.all(pred >= 0) and paddle.all(pred <= 1)
assert paddle.all(gt >= 0) and paddle.all(gt <= 1)
positive = gt * mask
negative = (1 - gt) * mask
positive_count = int(positive.sum())
if positive_count > 0:
loss = F.binary_cross_entropy(pred, gt, reduction='none')
positive_loss = paddle.sum(loss * positive)
negative_loss = loss * negative
negative_count = min(
int(negative.sum()), int(positive_count * self.ohem_ratio))
else:
positive_loss = paddle.to_tensor(0.0)
loss = F.binary_cross_entropy(pred, gt, reduction='none')
negative_loss = loss * negative
negative_count = 100
negative_loss, _ = paddle.topk(
negative_loss.reshape([-1]), negative_count)
balance_loss = (positive_loss + paddle.sum(negative_loss)) / (
float(positive_count + negative_count) + 1e-5)
return balance_loss
def gcn_loss(self, gcn_data):
"""CrossEntropy Loss from gcn module.
Args:
gcn_data (tuple(Tensor, Tensor)): The first is the
prediction with shape :math:`(N, 2)` and the
second is the gt label with shape :math:`(m, n)`
where :math:`m * n = N`.
Returns:
Tensor: CrossEntropy loss.
"""
gcn_pred, gt_labels = gcn_data
gt_labels = gt_labels.reshape([-1])
loss = F.cross_entropy(gcn_pred, gt_labels)
return loss
def bitmasks2tensor(self, bitmasks, target_sz):
"""Convert Bitmasks to tensor.
Args:
bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
for one img.
target_sz (tuple(int, int)): The target tensor of size
:math:`(H, W)`.
Returns:
list[Tensor]: The list of kernel tensors. Each element stands for
one kernel level.
"""
batch_size = len(bitmasks)
results = []
kernel = []
for batch_inx in range(batch_size):
mask = bitmasks[batch_inx]
# hxw
mask_sz = mask.shape
# left, right, top, bottom
pad = [0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]]
mask = F.pad(mask, pad, mode='constant', value=0)
kernel.append(mask)
kernel = paddle.stack(kernel)
results.append(kernel)
return results
def forward(self, preds, labels):
"""Compute Drrg loss.
"""
assert isinstance(preds, tuple)
gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map = labels[
1:8]
downsample_ratio = self.downsample_ratio
pred_maps, gcn_data = preds
pred_text_region = pred_maps[:, 0, :, :]
pred_center_region = pred_maps[:, 1, :, :]
pred_sin_map = pred_maps[:, 2, :, :]
pred_cos_map = pred_maps[:, 3, :, :]
pred_top_height_map = pred_maps[:, 4, :, :]
pred_bot_height_map = pred_maps[:, 5, :, :]
feature_sz = pred_maps.shape
# bitmask 2 tensor
mapping = {
'gt_text_mask': paddle.cast(gt_text_mask, 'float32'),
'gt_center_region_mask':
paddle.cast(gt_center_region_mask, 'float32'),
'gt_mask': paddle.cast(gt_mask, 'float32'),
'gt_top_height_map': paddle.cast(gt_top_height_map, 'float32'),
'gt_bot_height_map': paddle.cast(gt_bot_height_map, 'float32'),
'gt_sin_map': paddle.cast(gt_sin_map, 'float32'),
'gt_cos_map': paddle.cast(gt_cos_map, 'float32')
}
gt = {}
for key, value in mapping.items():
gt[key] = value
if abs(downsample_ratio - 1.0) < 1e-2:
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
else:
gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
if key in ['gt_top_height_map', 'gt_bot_height_map']:
gt[key] = [item * downsample_ratio for item in gt[key]]
gt[key] = [item for item in gt[key]]
scale = paddle.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
pred_sin_map = pred_sin_map * scale
pred_cos_map = pred_cos_map * scale
loss_text = self.balance_bce_loss(
F.sigmoid(pred_text_region), gt['gt_text_mask'][0],
gt['gt_mask'][0])
text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0])
negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0])
loss_center_map = F.binary_cross_entropy(
F.sigmoid(pred_center_region),
gt['gt_center_region_mask'][0],
reduction='none')
if int(text_mask.sum()) > 0:
loss_center_positive = paddle.sum(loss_center_map *
text_mask) / paddle.sum(text_mask)
else:
loss_center_positive = paddle.to_tensor(0.0)
loss_center_negative = paddle.sum(
loss_center_map *
negative_text_mask) / paddle.sum(negative_text_mask)
loss_center = loss_center_positive + 0.5 * loss_center_negative
center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0])
if int(center_mask.sum()) > 0:
map_sz = pred_top_height_map.shape
ones = paddle.ones(map_sz, dtype='float32')
loss_top = F.smooth_l1_loss(
pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2),
ones,
reduction='none')
loss_bot = F.smooth_l1_loss(
pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2),
ones,
reduction='none')
gt_height = (
gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0])
loss_height = paddle.sum(
(paddle.log(gt_height + 1) *
(loss_top + loss_bot)) * center_mask) / paddle.sum(center_mask)
loss_sin = paddle.sum(
F.smooth_l1_loss(
pred_sin_map, gt['gt_sin_map'][0],
reduction='none') * center_mask) / paddle.sum(center_mask)
loss_cos = paddle.sum(
F.smooth_l1_loss(
pred_cos_map, gt['gt_cos_map'][0],
reduction='none') * center_mask) / paddle.sum(center_mask)
else:
loss_height = paddle.to_tensor(0.0)
loss_sin = paddle.to_tensor(0.0)
loss_cos = paddle.to_tensor(0.0)
loss_gcn = self.gcn_loss(gcn_data)
loss = loss_text + loss_center + loss_height + loss_sin + loss_cos + loss_gcn
results = dict(
loss=loss,
loss_text=loss_text,
loss_center=loss_center,
loss_height=loss_height,
loss_sin=loss_sin,
loss_cos=loss_cos,
loss_gcn=loss_gcn)
return results
......@@ -24,6 +24,7 @@ def build_head(config):
from .det_fce_head import FCEHead
from .e2e_pg_head import PGHead
from .det_ct_head import CT_Head
from .det_drrg_head import DRRGHead
# rec head
from .rec_ctc_head import CTCHead
......@@ -54,7 +55,8 @@ def build_head(config):
'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead',
'MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead',
'VLHead', 'SLAHead', 'RobustScannerHead', 'CT_Head', 'RFLHead'
'VLHead', 'SLAHead', 'RobustScannerHead', 'CT_Head', 'RFLHead',
'DRRGHead'
]
#table head
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/dense_heads/drrg_head.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import warnings
import cv2
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .gcn import GCN
from .local_graph import LocalGraphs
from .proposal_local_graph import ProposalLocalGraphs
class DRRGHead(nn.Layer):
def __init__(self,
in_channels,
k_at_hops=(8, 4),
num_adjacent_linkages=3,
node_geo_feat_len=120,
pooling_scale=1.0,
pooling_output_size=(4, 3),
nms_thr=0.3,
min_width=8.0,
max_width=24.0,
comp_shrink_ratio=1.03,
comp_ratio=0.4,
comp_score_thr=0.3,
text_region_thr=0.2,
center_region_thr=0.2,
center_region_area_thr=50,
local_graph_thr=0.7,
**kwargs):
super().__init__()
assert isinstance(in_channels, int)
assert isinstance(k_at_hops, tuple)
assert isinstance(num_adjacent_linkages, int)
assert isinstance(node_geo_feat_len, int)
assert isinstance(pooling_scale, float)
assert isinstance(pooling_output_size, tuple)
assert isinstance(comp_shrink_ratio, float)
assert isinstance(nms_thr, float)
assert isinstance(min_width, float)
assert isinstance(max_width, float)
assert isinstance(comp_ratio, float)
assert isinstance(comp_score_thr, float)
assert isinstance(text_region_thr, float)
assert isinstance(center_region_thr, float)
assert isinstance(center_region_area_thr, int)
assert isinstance(local_graph_thr, float)
self.in_channels = in_channels
self.out_channels = 6
self.downsample_ratio = 1.0
self.k_at_hops = k_at_hops
self.num_adjacent_linkages = num_adjacent_linkages
self.node_geo_feat_len = node_geo_feat_len
self.pooling_scale = pooling_scale
self.pooling_output_size = pooling_output_size
self.comp_shrink_ratio = comp_shrink_ratio
self.nms_thr = nms_thr
self.min_width = min_width
self.max_width = max_width
self.comp_ratio = comp_ratio
self.comp_score_thr = comp_score_thr
self.text_region_thr = text_region_thr
self.center_region_thr = center_region_thr
self.center_region_area_thr = center_region_area_thr
self.local_graph_thr = local_graph_thr
self.out_conv = nn.Conv2D(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=1,
stride=1,
padding=0)
self.graph_train = LocalGraphs(
self.k_at_hops, self.num_adjacent_linkages, self.node_geo_feat_len,
self.pooling_scale, self.pooling_output_size, self.local_graph_thr)
self.graph_test = ProposalLocalGraphs(
self.k_at_hops, self.num_adjacent_linkages, self.node_geo_feat_len,
self.pooling_scale, self.pooling_output_size, self.nms_thr,
self.min_width, self.max_width, self.comp_shrink_ratio,
self.comp_ratio, self.comp_score_thr, self.text_region_thr,
self.center_region_thr, self.center_region_area_thr)
pool_w, pool_h = self.pooling_output_size
node_feat_len = (pool_w * pool_h) * (
self.in_channels + self.out_channels) + self.node_geo_feat_len
self.gcn = GCN(node_feat_len)
def forward(self, inputs, targets=None):
"""
Args:
inputs (Tensor): Shape of :math:`(N, C, H, W)`.
gt_comp_attribs (list[ndarray]): The padded text component
attributes. Shape: (num_component, 8).
Returns:
tuple: Returns (pred_maps, (gcn_pred, gt_labels)).
- | pred_maps (Tensor): Prediction map with shape
:math:`(N, C_{out}, H, W)`.
- | gcn_pred (Tensor): Prediction from GCN module, with
shape :math:`(N, 2)`.
- | gt_labels (Tensor): Ground-truth label with shape
:math:`(N, 8)`.
"""
if self.training:
assert targets is not None
gt_comp_attribs = targets[7]
pred_maps = self.out_conv(inputs)
feat_maps = paddle.concat([inputs, pred_maps], axis=1)
node_feats, adjacent_matrices, knn_inds, gt_labels = self.graph_train(
feat_maps, np.stack(gt_comp_attribs))
gcn_pred = self.gcn(node_feats, adjacent_matrices, knn_inds)
return pred_maps, (gcn_pred, gt_labels)
else:
return self.single_test(inputs)
def single_test(self, feat_maps):
r"""
Args:
feat_maps (Tensor): Shape of :math:`(N, C, H, W)`.
Returns:
tuple: Returns (edge, score, text_comps).
- | edge (ndarray): The edge array of shape :math:`(N, 2)`
where each row is a pair of text component indices
that makes up an edge in graph.
- | score (ndarray): The score array of shape :math:`(N,)`,
corresponding to the edge above.
- | text_comps (ndarray): The text components of shape
:math:`(N, 9)` where each row corresponds to one box and
its score: (x1, y1, x2, y2, x3, y3, x4, y4, score).
"""
pred_maps = self.out_conv(feat_maps)
feat_maps = paddle.concat([feat_maps, pred_maps], axis=1)
none_flag, graph_data = self.graph_test(pred_maps, feat_maps)
(local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
pivot_local_graphs, text_comps) = graph_data
if none_flag:
return None, None, None
gcn_pred = self.gcn(local_graphs_node_feat, adjacent_matrices,
pivots_knn_inds)
pred_labels = F.softmax(gcn_pred, axis=1)
edges = []
scores = []
pivot_local_graphs = pivot_local_graphs.squeeze().numpy()
for pivot_ind, pivot_local_graph in enumerate(pivot_local_graphs):
pivot = pivot_local_graph[0]
for k_ind, neighbor_ind in enumerate(pivots_knn_inds[pivot_ind]):
neighbor = pivot_local_graph[neighbor_ind.item()]
edges.append([pivot, neighbor])
scores.append(pred_labels[pivot_ind * pivots_knn_inds.shape[1] +
k_ind, 1].item())
edges = np.asarray(edges)
scores = np.asarray(scores)
return edges, scores, text_comps
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/gcn.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class BatchNorm1D(nn.BatchNorm1D):
def __init__(self,
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True):
momentum = 1 - momentum
weight_attr = None
bias_attr = None
if not affine:
weight_attr = paddle.ParamAttr(learning_rate=0.0)
bias_attr = paddle.ParamAttr(learning_rate=0.0)
super().__init__(
num_features,
momentum=momentum,
epsilon=eps,
weight_attr=weight_attr,
bias_attr=bias_attr,
use_global_stats=track_running_stats)
class MeanAggregator(nn.Layer):
def forward(self, features, A):
x = paddle.bmm(A, features)
return x
class GraphConv(nn.Layer):
def __init__(self, in_dim, out_dim):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.weight = self.create_parameter(
[in_dim * 2, out_dim],
default_initializer=nn.initializer.XavierUniform())
self.bias = self.create_parameter(
[out_dim],
is_bias=True,
default_initializer=nn.initializer.Assign([0] * out_dim))
self.aggregator = MeanAggregator()
def forward(self, features, A):
b, n, d = features.shape
assert d == self.in_dim
agg_feats = self.aggregator(features, A)
cat_feats = paddle.concat([features, agg_feats], axis=2)
out = paddle.einsum('bnd,df->bnf', cat_feats, self.weight)
out = F.relu(out + self.bias)
return out
class GCN(nn.Layer):
def __init__(self, feat_len):
super(GCN, self).__init__()
self.bn0 = BatchNorm1D(feat_len, affine=False)
self.conv1 = GraphConv(feat_len, 512)
self.conv2 = GraphConv(512, 256)
self.conv3 = GraphConv(256, 128)
self.conv4 = GraphConv(128, 64)
self.classifier = nn.Sequential(
nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2))
def forward(self, x, A, knn_inds):
num_local_graphs, num_max_nodes, feat_len = x.shape
x = x.reshape([-1, feat_len])
x = self.bn0(x)
x = x.reshape([num_local_graphs, num_max_nodes, feat_len])
x = self.conv1(x, A)
x = self.conv2(x, A)
x = self.conv3(x, A)
x = self.conv4(x, A)
k = knn_inds.shape[-1]
mid_feat_len = x.shape[-1]
edge_feat = paddle.zeros([num_local_graphs, k, mid_feat_len])
for graph_ind in range(num_local_graphs):
edge_feat[graph_ind, :, :] = x[graph_ind][paddle.to_tensor(knn_inds[
graph_ind])]
edge_feat = edge_feat.reshape([-1, mid_feat_len])
pred = self.classifier(edge_feat)
return pred
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/local_graph.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
from ppocr.ext_op import RoIAlignRotated
def normalize_adjacent_matrix(A):
assert A.ndim == 2
assert A.shape[0] == A.shape[1]
A = A + np.eye(A.shape[0])
d = np.sum(A, axis=0)
d = np.clip(d, 0, None)
d_inv = np.power(d, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.0
d_inv = np.diag(d_inv)
G = A.dot(d_inv).transpose().dot(d_inv)
return G
def euclidean_distance_matrix(A, B):
"""Calculate the Euclidean distance matrix.
Args:
A (ndarray): The point sequence.
B (ndarray): The point sequence with the same dimensions as A.
returns:
D (ndarray): The Euclidean distance matrix.
"""
assert A.ndim == 2
assert B.ndim == 2
assert A.shape[1] == B.shape[1]
m = A.shape[0]
n = B.shape[0]
A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n))
B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1))
D_squared = A_dots + B_dots - 2 * A.dot(B.T)
zero_mask = np.less(D_squared, 0.0)
D_squared[zero_mask] = 0.0
D = np.sqrt(D_squared)
return D
def feature_embedding(input_feats, out_feat_len):
"""Embed features. This code was partially adapted from
https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
input_feats (ndarray): The input features of shape (N, d), where N is
the number of nodes in graph, d is the input feature vector length.
out_feat_len (int): The length of output feature vector.
Returns:
embedded_feats (ndarray): The embedded features.
"""
assert input_feats.ndim == 2
assert isinstance(out_feat_len, int)
assert out_feat_len >= input_feats.shape[1]
num_nodes = input_feats.shape[0]
feat_dim = input_feats.shape[1]
feat_repeat_times = out_feat_len // feat_dim
residue_dim = out_feat_len % feat_dim
if residue_dim > 0:
embed_wave = np.array([
np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1)
for j in range(feat_repeat_times + 1)
]).reshape((feat_repeat_times + 1, 1, 1))
repeat_feats = np.repeat(
np.expand_dims(
input_feats, axis=0), feat_repeat_times, axis=0)
residue_feats = np.hstack([
input_feats[:, 0:residue_dim], np.zeros(
(num_nodes, feat_dim - residue_dim))
])
residue_feats = np.expand_dims(residue_feats, axis=0)
repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0)
embedded_feats = repeat_feats / embed_wave
embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
(num_nodes, -1))[:, 0:out_feat_len]
else:
embed_wave = np.array([
np.power(1000, 2.0 * (j // 2) / feat_repeat_times)
for j in range(feat_repeat_times)
]).reshape((feat_repeat_times, 1, 1))
repeat_feats = np.repeat(
np.expand_dims(
input_feats, axis=0), feat_repeat_times, axis=0)
embedded_feats = repeat_feats / embed_wave
embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
(num_nodes, -1)).astype(np.float32)
return embedded_feats
class LocalGraphs:
def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
pooling_scale, pooling_output_size, local_graph_thr):
assert len(k_at_hops) == 2
assert all(isinstance(n, int) for n in k_at_hops)
assert isinstance(num_adjacent_linkages, int)
assert isinstance(node_geo_feat_len, int)
assert isinstance(pooling_scale, float)
assert all(isinstance(n, int) for n in pooling_output_size)
assert isinstance(local_graph_thr, float)
self.k_at_hops = k_at_hops
self.num_adjacent_linkages = num_adjacent_linkages
self.node_geo_feat_dim = node_geo_feat_len
self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
self.local_graph_thr = local_graph_thr
def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels):
"""Generate local graphs for GCN to predict which instance a text
component belongs to.
Args:
sorted_dist_inds (ndarray): The complete graph node indices, which
is sorted according to the Euclidean distance.
gt_comp_labels(ndarray): The ground truth labels define the
instance to which the text components (nodes in graphs) belong.
Returns:
pivot_local_graphs(list[list[int]]): The list of local graph
neighbor indices of pivots.
pivot_knns(list[list[int]]): The list of k-nearest neighbor indices
of pivots.
"""
assert sorted_dist_inds.ndim == 2
assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
gt_comp_labels.shape[0])
knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
pivot_local_graphs = []
pivot_knns = []
for pivot_ind, knn in enumerate(knn_graph):
local_graph_neighbors = set(knn)
for neighbor_ind in knn:
local_graph_neighbors.update(
set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
1]))
local_graph_neighbors.discard(pivot_ind)
pivot_local_graph = list(local_graph_neighbors)
pivot_local_graph.insert(0, pivot_ind)
pivot_knn = [pivot_ind] + list(knn)
if pivot_ind < 1:
pivot_local_graphs.append(pivot_local_graph)
pivot_knns.append(pivot_knn)
else:
add_flag = True
for graph_ind, added_knn in enumerate(pivot_knns):
added_pivot_ind = added_knn[0]
added_local_graph = pivot_local_graphs[graph_ind]
union = len(
set(pivot_local_graph[1:]).union(
set(added_local_graph[1:])))
intersect = len(
set(pivot_local_graph[1:]).intersection(
set(added_local_graph[1:])))
local_graph_iou = intersect / (union + 1e-8)
if (local_graph_iou > self.local_graph_thr and
pivot_ind in added_knn and
gt_comp_labels[added_pivot_ind] ==
gt_comp_labels[pivot_ind] and
gt_comp_labels[pivot_ind] != 0):
add_flag = False
break
if add_flag:
pivot_local_graphs.append(pivot_local_graph)
pivot_knns.append(pivot_knn)
return pivot_local_graphs, pivot_knns
def generate_gcn_input(self, node_feat_batch, node_label_batch,
local_graph_batch, knn_batch, sorted_dist_ind_batch):
"""Generate graph convolution network input data.
Args:
node_feat_batch (List[Tensor]): The batched graph node features.
node_label_batch (List[ndarray]): The batched text component
labels.
local_graph_batch (List[List[list[int]]]): The local graph node
indices of image batch.
knn_batch (List[List[list[int]]]): The knn graph node indices of
image batch.
sorted_dist_ind_batch (list[ndarray]): The node indices sorted
according to the Euclidean distance.
Returns:
local_graphs_node_feat (Tensor): The node features of graph.
adjacent_matrices (Tensor): The adjacent matrices of local graphs.
pivots_knn_inds (Tensor): The k-nearest neighbor indices in
local graph.
gt_linkage (Tensor): The surpervision signal of GCN for linkage
prediction.
"""
assert isinstance(node_feat_batch, list)
assert isinstance(node_label_batch, list)
assert isinstance(local_graph_batch, list)
assert isinstance(knn_batch, list)
assert isinstance(sorted_dist_ind_batch, list)
num_max_nodes = max([
len(pivot_local_graph)
for pivot_local_graphs in local_graph_batch
for pivot_local_graph in pivot_local_graphs
])
local_graphs_node_feat = []
adjacent_matrices = []
pivots_knn_inds = []
pivots_gt_linkage = []
for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch):
node_feats = node_feat_batch[batch_ind]
pivot_local_graphs = local_graph_batch[batch_ind]
pivot_knns = knn_batch[batch_ind]
node_labels = node_label_batch[batch_ind]
for graph_ind, pivot_knn in enumerate(pivot_knns):
pivot_local_graph = pivot_local_graphs[graph_ind]
num_nodes = len(pivot_local_graph)
pivot_ind = pivot_local_graph[0]
node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}
knn_inds = paddle.to_tensor(
[node2ind_map[i] for i in pivot_knn[1:]])
pivot_feats = node_feats[pivot_ind]
normalized_feats = node_feats[paddle.to_tensor(
pivot_local_graph)] - pivot_feats
adjacent_matrix = np.zeros(
(num_nodes, num_nodes), dtype=np.float32)
for node in pivot_local_graph:
neighbors = sorted_dist_inds[node, 1:
self.num_adjacent_linkages + 1]
for neighbor in neighbors:
if neighbor in pivot_local_graph:
adjacent_matrix[node2ind_map[node], node2ind_map[
neighbor]] = 1
adjacent_matrix[node2ind_map[neighbor],
node2ind_map[node]] = 1
adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
pad_adjacent_matrix = paddle.zeros(
(num_max_nodes, num_max_nodes))
pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
paddle.to_tensor(adjacent_matrix), 'float32')
pad_normalized_feats = paddle.concat(
[
normalized_feats, paddle.zeros(
(num_max_nodes - num_nodes,
normalized_feats.shape[1]))
],
axis=0)
local_graph_labels = node_labels[pivot_local_graph]
knn_labels = local_graph_labels[knn_inds.numpy()]
link_labels = ((node_labels[pivot_ind] == knn_labels) &
(node_labels[pivot_ind] > 0)).astype(np.int64)
link_labels = paddle.to_tensor(link_labels)
local_graphs_node_feat.append(pad_normalized_feats)
adjacent_matrices.append(pad_adjacent_matrix)
pivots_knn_inds.append(knn_inds)
pivots_gt_linkage.append(link_labels)
local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
adjacent_matrices = paddle.stack(adjacent_matrices, 0)
pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
pivots_gt_linkage = paddle.stack(pivots_gt_linkage, 0)
return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
pivots_gt_linkage)
def __call__(self, feat_maps, comp_attribs):
"""Generate local graphs as GCN input.
Args:
feat_maps (Tensor): The feature maps to extract the content
features of text components.
comp_attribs (ndarray): The text component attributes.
Returns:
local_graphs_node_feat (Tensor): The node features of graph.
adjacent_matrices (Tensor): The adjacent matrices of local graphs.
pivots_knn_inds (Tensor): The k-nearest neighbor indices in local
graph.
gt_linkage (Tensor): The surpervision signal of GCN for linkage
prediction.
"""
assert isinstance(feat_maps, paddle.Tensor)
assert comp_attribs.ndim == 3
assert comp_attribs.shape[2] == 8
sorted_dist_inds_batch = []
local_graph_batch = []
knn_batch = []
node_feat_batch = []
node_label_batch = []
for batch_ind in range(comp_attribs.shape[0]):
num_comps = int(comp_attribs[batch_ind, 0, 0])
comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7]
node_labels = comp_attribs[batch_ind, :num_comps, 7].astype(
np.int32)
comp_centers = comp_geo_attribs[:, 0:2]
distance_matrix = euclidean_distance_matrix(comp_centers,
comp_centers)
batch_id = np.zeros(
(comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind
comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1)
angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign(
comp_geo_attribs[:, -1])
angle = angle.reshape((-1, 1))
rotated_rois = np.hstack(
[batch_id, comp_geo_attribs[:, :-2], angle])
rois = paddle.to_tensor(rotated_rois)
content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0),
rois)
content_feats = content_feats.reshape([content_feats.shape[0], -1])
geo_feats = feature_embedding(comp_geo_attribs,
self.node_geo_feat_dim)
geo_feats = paddle.to_tensor(geo_feats)
node_feats = paddle.concat([content_feats, geo_feats], axis=-1)
sorted_dist_inds = np.argsort(distance_matrix, axis=1)
pivot_local_graphs, pivot_knns = self.generate_local_graphs(
sorted_dist_inds, node_labels)
node_feat_batch.append(node_feats)
node_label_batch.append(node_labels)
local_graph_batch.append(pivot_local_graphs)
knn_batch.append(pivot_knns)
sorted_dist_inds_batch.append(sorted_dist_inds)
(node_feats, adjacent_matrices, knn_inds, gt_linkage) = \
self.generate_gcn_input(node_feat_batch,
node_label_batch,
local_graph_batch,
knn_batch,
sorted_dist_inds_batch)
return node_feats, adjacent_matrices, knn_inds, gt_linkage
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/proposal_local_graph.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cv2
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from lanms import merge_quadrangle_n9 as la_nms
from ppocr.ext_op import RoIAlignRotated
from .local_graph import (euclidean_distance_matrix, feature_embedding,
normalize_adjacent_matrix)
def fill_hole(input_mask):
h, w = input_mask.shape
canvas = np.zeros((h + 2, w + 2), np.uint8)
canvas[1:h + 1, 1:w + 1] = input_mask.copy()
mask = np.zeros((h + 4, w + 4), np.uint8)
cv2.floodFill(canvas, mask, (0, 0), 1)
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)
return ~canvas | input_mask
class ProposalLocalGraphs:
def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
pooling_scale, pooling_output_size, nms_thr, min_width,
max_width, comp_shrink_ratio, comp_w_h_ratio, comp_score_thr,
text_region_thr, center_region_thr, center_region_area_thr):
assert len(k_at_hops) == 2
assert isinstance(k_at_hops, tuple)
assert isinstance(num_adjacent_linkages, int)
assert isinstance(node_geo_feat_len, int)
assert isinstance(pooling_scale, float)
assert isinstance(pooling_output_size, tuple)
assert isinstance(nms_thr, float)
assert isinstance(min_width, float)
assert isinstance(max_width, float)
assert isinstance(comp_shrink_ratio, float)
assert isinstance(comp_w_h_ratio, float)
assert isinstance(comp_score_thr, float)
assert isinstance(text_region_thr, float)
assert isinstance(center_region_thr, float)
assert isinstance(center_region_area_thr, int)
self.k_at_hops = k_at_hops
self.active_connection = num_adjacent_linkages
self.local_graph_depth = len(self.k_at_hops)
self.node_geo_feat_dim = node_geo_feat_len
self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
self.nms_thr = nms_thr
self.min_width = min_width
self.max_width = max_width
self.comp_shrink_ratio = comp_shrink_ratio
self.comp_w_h_ratio = comp_w_h_ratio
self.comp_score_thr = comp_score_thr
self.text_region_thr = text_region_thr
self.center_region_thr = center_region_thr
self.center_region_area_thr = center_region_area_thr
def propose_comps(self, score_map, top_height_map, bot_height_map, sin_map,
cos_map, comp_score_thr, min_width, max_width,
comp_shrink_ratio, comp_w_h_ratio):
"""Propose text components.
Args:
score_map (ndarray): The score map for NMS.
top_height_map (ndarray): The predicted text height map from each
pixel in text center region to top sideline.
bot_height_map (ndarray): The predicted text height map from each
pixel in text center region to bottom sideline.
sin_map (ndarray): The predicted sin(theta) map.
cos_map (ndarray): The predicted cos(theta) map.
comp_score_thr (float): The score threshold of text component.
min_width (float): The minimum width of text components.
max_width (float): The maximum width of text components.
comp_shrink_ratio (float): The shrink ratio of text components.
comp_w_h_ratio (float): The width to height ratio of text
components.
Returns:
text_comps (ndarray): The text components.
"""
comp_centers = np.argwhere(score_map > comp_score_thr)
comp_centers = comp_centers[np.argsort(comp_centers[:, 0])]
y = comp_centers[:, 0]
x = comp_centers[:, 1]
top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
sin = sin_map[y, x].reshape((-1, 1))
cos = cos_map[y, x].reshape((-1, 1))
top_mid_pts = comp_centers + np.hstack(
[top_height * sin, top_height * cos])
bot_mid_pts = comp_centers - np.hstack(
[bot_height * sin, bot_height * cos])
width = (top_height + bot_height) * comp_w_h_ratio
width = np.clip(width, min_width, max_width)
r = width / 2
tl = top_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
tr = top_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
br = bot_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
bl = bot_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)
score = score_map[y, x].reshape((-1, 1))
text_comps = np.hstack([text_comps, score])
return text_comps
def propose_comps_and_attribs(self, text_region_map, center_region_map,
top_height_map, bot_height_map, sin_map,
cos_map):
"""Generate text components and attributes.
Args:
text_region_map (ndarray): The predicted text region probability
map.
center_region_map (ndarray): The predicted text center region
probability map.
top_height_map (ndarray): The predicted text height map from each
pixel in text center region to top sideline.
bot_height_map (ndarray): The predicted text height map from each
pixel in text center region to bottom sideline.
sin_map (ndarray): The predicted sin(theta) map.
cos_map (ndarray): The predicted cos(theta) map.
Returns:
comp_attribs (ndarray): The text component attributes.
text_comps (ndarray): The text components.
"""
assert (text_region_map.shape == center_region_map.shape ==
top_height_map.shape == bot_height_map.shape == sin_map.shape ==
cos_map.shape)
text_mask = text_region_map > self.text_region_thr
center_region_mask = (
center_region_map > self.center_region_thr) * text_mask
scale = np.sqrt(1.0 / (sin_map**2 + cos_map**2 + 1e-8))
sin_map, cos_map = sin_map * scale, cos_map * scale
center_region_mask = fill_hole(center_region_mask)
center_region_contours, _ = cv2.findContours(
center_region_mask.astype(np.uint8), cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
mask_sz = center_region_map.shape
comp_list = []
for contour in center_region_contours:
current_center_mask = np.zeros(mask_sz)
cv2.drawContours(current_center_mask, [contour], -1, 1, -1)
if current_center_mask.sum() <= self.center_region_area_thr:
continue
score_map = text_region_map * current_center_mask
text_comps = self.propose_comps(
score_map, top_height_map, bot_height_map, sin_map, cos_map,
self.comp_score_thr, self.min_width, self.max_width,
self.comp_shrink_ratio, self.comp_w_h_ratio)
text_comps = la_nms(text_comps, self.nms_thr)
text_comp_mask = np.zeros(mask_sz)
text_comp_boxes = text_comps[:, :8].reshape(
(-1, 4, 2)).astype(np.int32)
cv2.drawContours(text_comp_mask, text_comp_boxes, -1, 1, -1)
if (text_comp_mask * text_mask).sum() < text_comp_mask.sum() * 0.5:
continue
if text_comps.shape[-1] > 0:
comp_list.append(text_comps)
if len(comp_list) <= 0:
return None, None
text_comps = np.vstack(comp_list)
text_comp_boxes = text_comps[:, :8].reshape((-1, 4, 2))
centers = np.mean(text_comp_boxes, axis=1).astype(np.int32)
x = centers[:, 0]
y = centers[:, 1]
scores = []
for text_comp_box in text_comp_boxes:
text_comp_box[:, 0] = np.clip(text_comp_box[:, 0], 0,
mask_sz[1] - 1)
text_comp_box[:, 1] = np.clip(text_comp_box[:, 1], 0,
mask_sz[0] - 1)
min_coord = np.min(text_comp_box, axis=0).astype(np.int32)
max_coord = np.max(text_comp_box, axis=0).astype(np.int32)
text_comp_box = text_comp_box - min_coord
box_sz = (max_coord - min_coord + 1)
temp_comp_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
cv2.fillPoly(temp_comp_mask, [text_comp_box.astype(np.int32)], 1)
temp_region_patch = text_region_map[min_coord[1]:(max_coord[1] + 1),
min_coord[0]:(max_coord[0] + 1)]
score = cv2.mean(temp_region_patch, temp_comp_mask)[0]
scores.append(score)
scores = np.array(scores).reshape((-1, 1))
text_comps = np.hstack([text_comps[:, :-1], scores])
h = top_height_map[y, x].reshape(
(-1, 1)) + bot_height_map[y, x].reshape((-1, 1))
w = np.clip(h * self.comp_w_h_ratio, self.min_width, self.max_width)
sin = sin_map[y, x].reshape((-1, 1))
cos = cos_map[y, x].reshape((-1, 1))
x = x.reshape((-1, 1))
y = y.reshape((-1, 1))
comp_attribs = np.hstack([x, y, h, w, cos, sin])
return comp_attribs, text_comps
def generate_local_graphs(self, sorted_dist_inds, node_feats):
"""Generate local graphs and graph convolution network input data.
Args:
sorted_dist_inds (ndarray): The node indices sorted according to
the Euclidean distance.
node_feats (tensor): The features of nodes in graph.
Returns:
local_graphs_node_feats (tensor): The features of nodes in local
graphs.
adjacent_matrices (tensor): The adjacent matrices.
pivots_knn_inds (tensor): The k-nearest neighbor indices in
local graphs.
pivots_local_graphs (tensor): The indices of nodes in local
graphs.
"""
assert sorted_dist_inds.ndim == 2
assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
node_feats.shape[0])
knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
pivot_local_graphs = []
pivot_knns = []
for pivot_ind, knn in enumerate(knn_graph):
local_graph_neighbors = set(knn)
for neighbor_ind in knn:
local_graph_neighbors.update(
set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
1]))
local_graph_neighbors.discard(pivot_ind)
pivot_local_graph = list(local_graph_neighbors)
pivot_local_graph.insert(0, pivot_ind)
pivot_knn = [pivot_ind] + list(knn)
pivot_local_graphs.append(pivot_local_graph)
pivot_knns.append(pivot_knn)
num_max_nodes = max([
len(pivot_local_graph) for pivot_local_graph in pivot_local_graphs
])
local_graphs_node_feat = []
adjacent_matrices = []
pivots_knn_inds = []
pivots_local_graphs = []
for graph_ind, pivot_knn in enumerate(pivot_knns):
pivot_local_graph = pivot_local_graphs[graph_ind]
num_nodes = len(pivot_local_graph)
pivot_ind = pivot_local_graph[0]
node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}
knn_inds = paddle.cast(
paddle.to_tensor([node2ind_map[i]
for i in pivot_knn[1:]]), 'int64')
pivot_feats = node_feats[pivot_ind]
normalized_feats = node_feats[paddle.to_tensor(
pivot_local_graph)] - pivot_feats
adjacent_matrix = np.zeros((num_nodes, num_nodes), dtype=np.float32)
for node in pivot_local_graph:
neighbors = sorted_dist_inds[node, 1:self.active_connection + 1]
for neighbor in neighbors:
if neighbor in pivot_local_graph:
adjacent_matrix[node2ind_map[node], node2ind_map[
neighbor]] = 1
adjacent_matrix[node2ind_map[neighbor], node2ind_map[
node]] = 1
adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
pad_adjacent_matrix = paddle.zeros((num_max_nodes, num_max_nodes), )
pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
paddle.to_tensor(adjacent_matrix), 'float32')
pad_normalized_feats = paddle.concat(
[
normalized_feats, paddle.zeros(
(num_max_nodes - num_nodes, normalized_feats.shape[1]),
)
],
axis=0)
local_graph_nodes = paddle.to_tensor(pivot_local_graph)
local_graph_nodes = paddle.concat(
[
local_graph_nodes, paddle.zeros(
[num_max_nodes - num_nodes], dtype='int64')
],
axis=-1)
local_graphs_node_feat.append(pad_normalized_feats)
adjacent_matrices.append(pad_adjacent_matrix)
pivots_knn_inds.append(knn_inds)
pivots_local_graphs.append(local_graph_nodes)
local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
adjacent_matrices = paddle.stack(adjacent_matrices, 0)
pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
pivots_local_graphs = paddle.stack(pivots_local_graphs, 0)
return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
pivots_local_graphs)
def __call__(self, preds, feat_maps):
"""Generate local graphs and graph convolutional network input data.
Args:
preds (tensor): The predicted maps.
feat_maps (tensor): The feature maps to extract content feature of
text components.
Returns:
none_flag (bool): The flag showing whether the number of proposed
text components is 0.
local_graphs_node_feats (tensor): The features of nodes in local
graphs.
adjacent_matrices (tensor): The adjacent matrices.
pivots_knn_inds (tensor): The k-nearest neighbor indices in
local graphs.
pivots_local_graphs (tensor): The indices of nodes in local
graphs.
text_comps (ndarray): The predicted text components.
"""
if preds.ndim == 4:
assert preds.shape[0] == 1
preds = paddle.squeeze(preds)
pred_text_region = F.sigmoid(preds[0]).numpy()
pred_center_region = F.sigmoid(preds[1]).numpy()
pred_sin_map = preds[2].numpy()
pred_cos_map = preds[3].numpy()
pred_top_height_map = preds[4].numpy()
pred_bot_height_map = preds[5].numpy()
comp_attribs, text_comps = self.propose_comps_and_attribs(
pred_text_region, pred_center_region, pred_top_height_map,
pred_bot_height_map, pred_sin_map, pred_cos_map)
if comp_attribs is None or len(comp_attribs) < 2:
none_flag = True
return none_flag, (0, 0, 0, 0, 0)
comp_centers = comp_attribs[:, 0:2]
distance_matrix = euclidean_distance_matrix(comp_centers, comp_centers)
geo_feats = feature_embedding(comp_attribs, self.node_geo_feat_dim)
geo_feats = paddle.to_tensor(geo_feats)
batch_id = np.zeros((comp_attribs.shape[0], 1), dtype=np.float32)
comp_attribs = comp_attribs.astype(np.float32)
angle = np.arccos(comp_attribs[:, -2]) * np.sign(comp_attribs[:, -1])
angle = angle.reshape((-1, 1))
rotated_rois = np.hstack([batch_id, comp_attribs[:, :-2], angle])
rois = paddle.to_tensor(rotated_rois)
content_feats = self.pooling(feat_maps, rois)
content_feats = content_feats.reshape([content_feats.shape[0], -1])
node_feats = paddle.concat([content_feats, geo_feats], axis=-1)
sorted_dist_inds = np.argsort(distance_matrix, axis=1)
(local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
pivots_local_graphs) = self.generate_local_graphs(sorted_dist_inds,
node_feats)
none_flag = False
return none_flag, (local_graphs_node_feat, adjacent_matrices,
pivots_knn_inds, pivots_local_graphs, text_comps)
......@@ -27,11 +27,12 @@ def build_neck(config):
from .pren_fpn import PRENFPN
from .csp_pan import CSPPAN
from .ct_fpn import CTFPN
from .fpn_unet import FPN_UNet
from .rf_adaptor import RFAdaptor
support_dict = [
'FPN', 'FCEFPN', 'LKPAN', 'DBFPN', 'RSEFPN', 'EASTFPN', 'SASTFPN',
'SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN', 'CSPPAN', 'CTFPN',
'RFAdaptor'
'RFAdaptor', 'FPN_UNet'
]
module_name = config.pop('name')
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class UpBlock(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
assert isinstance(in_channels, int)
assert isinstance(out_channels, int)
self.conv1x1 = nn.Conv2D(
in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.conv3x3 = nn.Conv2D(
in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.deconv = nn.Conv2DTranspose(
out_channels, out_channels, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = F.relu(self.conv1x1(x))
x = F.relu(self.conv3x3(x))
x = self.deconv(x)
return x
class FPN_UNet(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
assert len(in_channels) == 4
assert isinstance(out_channels, int)
self.out_channels = out_channels
blocks_out_channels = [out_channels] + [
min(out_channels * 2**i, 256) for i in range(4)
]
blocks_in_channels = [blocks_out_channels[1]] + [
in_channels[i] + blocks_out_channels[i + 2] for i in range(3)
] + [in_channels[3]]
self.up4 = nn.Conv2DTranspose(
blocks_in_channels[4],
blocks_out_channels[4],
kernel_size=4,
stride=2,
padding=1)
self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3])
self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2])
self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1])
self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0])
def forward(self, x):
"""
Args:
x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape
:math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5
features respectively. :math:`C_i` should matches the number in
``in_channels``.
Returns:
Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and
:math:`W=4W_0`.
"""
c2, c3, c4, c5 = x
x = F.relu(self.up4(c5))
x = paddle.concat([x, c4], axis=1)
x = F.relu(self.up_block3(x))
x = paddle.concat([x, c3], axis=1)
x = F.relu(self.up_block2(x))
x = paddle.concat([x, c2], axis=1)
x = F.relu(self.up_block1(x))
x = self.up_block0(x)
return x
......@@ -36,6 +36,7 @@ from .vqa_token_re_layoutlm_postprocess import VQAReTokenLayoutLMPostProcess, Di
from .table_postprocess import TableMasterLabelDecode, TableLabelDecode
from .picodet_postprocess import PicoDetPostProcess
from .ct_postprocess import CTPostProcess
from .drrg_postprocess import DRRGPostprocess
def build_post_process(config, global_config=None):
......@@ -49,7 +50,8 @@ def build_post_process(config, global_config=None):
'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode',
'TableMasterLabelDecode', 'SPINLabelDecode',
'DistillationSerPostProcess', 'DistillationRePostProcess',
'VLLabelDecode', 'PicoDetPostProcess', 'CTPostProcess', 'RFLLabelDecode'
'VLLabelDecode', 'PicoDetPostProcess', 'CTPostProcess',
'RFLLabelDecode', 'DRRGPostprocess'
]
if config['name'] == 'PSEPostProcess':
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/postprocess/drrg_postprocessor.py
"""
import functools
import operator
import numpy as np
import paddle
from numpy.linalg import norm
import cv2
class Node:
def __init__(self, ind):
self.__ind = ind
self.__links = set()
@property
def ind(self):
return self.__ind
@property
def links(self):
return set(self.__links)
def add_link(self, link_node):
self.__links.add(link_node)
link_node.__links.add(self)
def graph_propagation(edges, scores, text_comps, edge_len_thr=50.):
assert edges.ndim == 2
assert edges.shape[1] == 2
assert edges.shape[0] == scores.shape[0]
assert text_comps.ndim == 2
assert isinstance(edge_len_thr, float)
edges = np.sort(edges, axis=1)
score_dict = {}
for i, edge in enumerate(edges):
if text_comps is not None:
box1 = text_comps[edge[0], :8].reshape(4, 2)
box2 = text_comps[edge[1], :8].reshape(4, 2)
center1 = np.mean(box1, axis=0)
center2 = np.mean(box2, axis=0)
distance = norm(center1 - center2)
if distance > edge_len_thr:
scores[i] = 0
if (edge[0], edge[1]) in score_dict:
score_dict[edge[0], edge[1]] = 0.5 * (
score_dict[edge[0], edge[1]] + scores[i])
else:
score_dict[edge[0], edge[1]] = scores[i]
nodes = np.sort(np.unique(edges.flatten()))
mapping = -1 * np.ones((np.max(nodes) + 1), dtype=np.int)
mapping[nodes] = np.arange(nodes.shape[0])
order_inds = mapping[edges]
vertices = [Node(node) for node in nodes]
for ind in order_inds:
vertices[ind[0]].add_link(vertices[ind[1]])
return vertices, score_dict
def connected_components(nodes, score_dict, link_thr):
assert isinstance(nodes, list)
assert all([isinstance(node, Node) for node in nodes])
assert isinstance(score_dict, dict)
assert isinstance(link_thr, float)
clusters = []
nodes = set(nodes)
while nodes:
node = nodes.pop()
cluster = {node}
node_queue = [node]
while node_queue:
node = node_queue.pop(0)
neighbors = set([
neighbor for neighbor in node.links
if score_dict[tuple(sorted([node.ind, neighbor.ind]))] >=
link_thr
])
neighbors.difference_update(cluster)
nodes.difference_update(neighbors)
cluster.update(neighbors)
node_queue.extend(neighbors)
clusters.append(list(cluster))
return clusters
def clusters2labels(clusters, num_nodes):
assert isinstance(clusters, list)
assert all([isinstance(cluster, list) for cluster in clusters])
assert all(
[isinstance(node, Node) for cluster in clusters for node in cluster])
assert isinstance(num_nodes, int)
node_labels = np.zeros(num_nodes)
for cluster_ind, cluster in enumerate(clusters):
for node in cluster:
node_labels[node.ind] = cluster_ind
return node_labels
def remove_single(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert text_comps.shape[0] == comp_pred_labels.shape[0]
single_flags = np.zeros_like(comp_pred_labels)
pred_labels = np.unique(comp_pred_labels)
for label in pred_labels:
current_label_flag = (comp_pred_labels == label)
if np.sum(current_label_flag) == 1:
single_flags[np.where(current_label_flag)[0][0]] = 1
keep_ind = [i for i in range(len(comp_pred_labels)) if not single_flags[i]]
filtered_text_comps = text_comps[keep_ind, :]
filtered_labels = comp_pred_labels[keep_ind]
return filtered_text_comps, filtered_labels
def norm2(point1, point2):
return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)**0.5
def min_connect_path(points):
assert isinstance(points, list)
assert all([isinstance(point, list) for point in points])
assert all([isinstance(coord, int) for point in points for coord in point])
points_queue = points.copy()
shortest_path = []
current_edge = [[], []]
edge_dict0 = {}
edge_dict1 = {}
current_edge[0] = points_queue[0]
current_edge[1] = points_queue[0]
points_queue.remove(points_queue[0])
while points_queue:
for point in points_queue:
length0 = norm2(point, current_edge[0])
edge_dict0[length0] = [point, current_edge[0]]
length1 = norm2(current_edge[1], point)
edge_dict1[length1] = [current_edge[1], point]
key0 = min(edge_dict0.keys())
key1 = min(edge_dict1.keys())
if key0 <= key1:
start = edge_dict0[key0][0]
end = edge_dict0[key0][1]
shortest_path.insert(0, [points.index(start), points.index(end)])
points_queue.remove(start)
current_edge[0] = start
else:
start = edge_dict1[key1][0]
end = edge_dict1[key1][1]
shortest_path.append([points.index(start), points.index(end)])
points_queue.remove(end)
current_edge[1] = end
edge_dict0 = {}
edge_dict1 = {}
shortest_path = functools.reduce(operator.concat, shortest_path)
shortest_path = sorted(set(shortest_path), key=shortest_path.index)
return shortest_path
def in_contour(cont, point):
x, y = point
is_inner = cv2.pointPolygonTest(cont, (int(x), int(y)), False) > 0.5
return is_inner
def fix_corner(top_line, bot_line, start_box, end_box):
assert isinstance(top_line, list)
assert all(isinstance(point, list) for point in top_line)
assert isinstance(bot_line, list)
assert all(isinstance(point, list) for point in bot_line)
assert start_box.shape == end_box.shape == (4, 2)
contour = np.array(top_line + bot_line[::-1])
start_left_mid = (start_box[0] + start_box[3]) / 2
start_right_mid = (start_box[1] + start_box[2]) / 2
end_left_mid = (end_box[0] + end_box[3]) / 2
end_right_mid = (end_box[1] + end_box[2]) / 2
if not in_contour(contour, start_left_mid):
top_line.insert(0, start_box[0].tolist())
bot_line.insert(0, start_box[3].tolist())
elif not in_contour(contour, start_right_mid):
top_line.insert(0, start_box[1].tolist())
bot_line.insert(0, start_box[2].tolist())
if not in_contour(contour, end_left_mid):
top_line.append(end_box[0].tolist())
bot_line.append(end_box[3].tolist())
elif not in_contour(contour, end_right_mid):
top_line.append(end_box[1].tolist())
bot_line.append(end_box[2].tolist())
return top_line, bot_line
def comps2boundaries(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert len(text_comps) == len(comp_pred_labels)
boundaries = []
if len(text_comps) < 1:
return boundaries
for cluster_ind in range(0, int(np.max(comp_pred_labels)) + 1):
cluster_comp_inds = np.where(comp_pred_labels == cluster_ind)
text_comp_boxes = text_comps[cluster_comp_inds, :8].reshape(
(-1, 4, 2)).astype(np.int32)
score = np.mean(text_comps[cluster_comp_inds, -1])
if text_comp_boxes.shape[0] < 1:
continue
elif text_comp_boxes.shape[0] > 1:
centers = np.mean(text_comp_boxes, axis=1).astype(np.int32).tolist()
shortest_path = min_connect_path(centers)
text_comp_boxes = text_comp_boxes[shortest_path]
top_line = np.mean(
text_comp_boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
bot_line = np.mean(
text_comp_boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
top_line, bot_line = fix_corner(
top_line, bot_line, text_comp_boxes[0], text_comp_boxes[-1])
boundary_points = top_line + bot_line[::-1]
else:
top_line = text_comp_boxes[0, 0:2, :].astype(np.int32).tolist()
bot_line = text_comp_boxes[0, 2:4:-1, :].astype(np.int32).tolist()
boundary_points = top_line + bot_line
boundary = [p for coord in boundary_points for p in coord] + [score]
boundaries.append(boundary)
return boundaries
class DRRGPostprocess(object):
"""Merge text components and construct boundaries of text instances.
Args:
link_thr (float): The edge score threshold.
"""
def __init__(self, link_thr, **kwargs):
assert isinstance(link_thr, float)
self.link_thr = link_thr
def __call__(self, preds, shape_list):
"""
Args:
edges (ndarray): The edge array of shape N * 2, each row is a node
index pair that makes up an edge in graph.
scores (ndarray): The edge score array of shape (N,).
text_comps (ndarray): The text components.
Returns:
List[list[float]]: The predicted boundaries of text instances.
"""
edges, scores, text_comps = preds
if edges is not None:
if isinstance(edges, paddle.Tensor):
edges = edges.numpy()
if isinstance(scores, paddle.Tensor):
scores = scores.numpy()
if isinstance(text_comps, paddle.Tensor):
text_comps = text_comps.numpy()
assert len(edges) == len(scores)
assert text_comps.ndim == 2
assert text_comps.shape[1] == 9
vertices, score_dict = graph_propagation(edges, scores, text_comps)
clusters = connected_components(vertices, score_dict, self.link_thr)
pred_labels = clusters2labels(clusters, text_comps.shape[0])
text_comps, pred_labels = remove_single(text_comps, pred_labels)
boundaries = comps2boundaries(text_comps, pred_labels)
else:
boundaries = []
boundaries, scores = self.resize_boundary(
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])
boxes_batch = [dict(points=boundaries, scores=scores)]
return boxes_batch
def resize_boundary(self, boundaries, scale_factor):
"""Rescale boundaries via scale_factor.
Args:
boundaries (list[list[float]]): The boundary list. Each boundary
with size 2k+1 with k>=4.
scale_factor(ndarray): The scale factor of size (4,).
Returns:
boundaries (list[list[float]]): The scaled boundaries.
"""
boxes = []
scores = []
for b in boundaries:
sz = len(b)
scores.append(b[-1])
b = (np.array(b[:sz - 1]) *
(np.tile(scale_factor[:2], int(
(sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
boxes.append(np.array(b).reshape([-1, 2]))
return boxes, scores
......@@ -220,7 +220,7 @@ def train(config,
use_srn = config['Architecture']['algorithm'] == "SRN"
extra_input_models = [
"SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN",
"RobustScanner", "RFL"
"RobustScanner", "RFL", 'DRRG'
]
extra_input = False
if config['Architecture']['algorithm'] == 'Distillation':
......@@ -629,7 +629,7 @@ def preprocess(is_train=False):
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN',
'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL'
'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG'
]
if use_xpu:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册