diff --git a/configs/det/det_r50_drrg_ctw.yml b/configs/det/det_r50_drrg_ctw.yml new file mode 100755 index 0000000000000000000000000000000000000000..f67c926f3a8294a41df0751357061c69a895549e --- /dev/null +++ b/configs/det/det_r50_drrg_ctw.yml @@ -0,0 +1,133 @@ +Global: + use_gpu: true + epoch_num: 1200 + log_smooth_window: 20 + print_batch_step: 5 + save_model_dir: ./output/det_r50_drrg_ctw/ + save_epoch_step: 100 + # evaluation is run every 1260 iterations + eval_batch_step: [37800, 1260] + cal_metric_during_train: False + pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained.pdparams + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_en/img_10.jpg + save_res_path: ./output/det_drrg/predicts_drrg.txt + + +Architecture: + model_type: det + algorithm: DRRG + Transform: + Backbone: + name: ResNet_vd + layers: 50 + Neck: + name: FPN_UNet + in_channels: [256, 512, 1024, 2048] + out_channels: 32 + Head: + name: DRRGHead + in_channels: 32 + text_region_thr: 0.3 + center_region_thr: 0.4 +Loss: + name: DRRGLoss + +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: DecayLearningRate + learning_rate: 0.028 + epochs: 1200 + factor: 0.9 + end_lr: 0.0000001 + weight_decay: 0.0001 + +PostProcess: + name: DRRGPostprocess + link_thr: 0.8 + +Metric: + name: DetFCEMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ctw1500/imgs/ + label_file_list: + - ./train_data/ctw1500/imgs/training.txt + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + ignore_orientation: True + - DetLabelEncode: # Class handling label + - ColorJitter: + brightness: 0.12549019607843137 + saturation: 0.5 + - RandomScaling: + - RandomCropFlip: + crop_ratio: 0.5 + - RandomCropPolyInstances: + crop_ratio: 0.8 + min_side_ratio: 0.3 + - RandomRotatePolyInstances: + rotate_ratio: 0.5 + max_angle: 60 + pad_with_fixed_color: False + - SquareResizePad: + target_size: 800 + pad_ratio: 0.6 + - IaaAugment: + augmenter_args: + - { 'type': Fliplr, 'args': { 'p': 0.5 } } + - DRRGTargets: + - NormalizeImage: + scale: 1./255. + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + keep_keys: ['image', 'gt_text_mask', 'gt_center_region_mask', 'gt_mask', + 'gt_top_height_map', 'gt_bot_height_map', 'gt_sin_map', + 'gt_cos_map', 'gt_comp_attribs'] # dataloader will return list in this order + loader: + shuffle: True + drop_last: False + batch_size_per_card: 4 + num_workers: 8 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ctw1500/imgs/ + label_file_list: + - ./train_data/ctw1500/imgs/test.txt + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + ignore_orientation: True + - DetLabelEncode: # Class handling label + - DetResizeForTest: + limit_type: 'min' + limit_side_len: 640 + - NormalizeImage: + scale: 1./255. + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: 'hwc' + - Pad: + - ToCHWImage: + - KeepKeys: + keep_keys: ['image', 'shape', 'polys', 'ignore_tags'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 1 # must be 1 + num_workers: 2 \ No newline at end of file diff --git a/doc/doc_ch/algorithm_det_drrg.md b/doc/doc_ch/algorithm_det_drrg.md new file mode 100644 index 0000000000000000000000000000000000000000..d89a16ae68b7024238a3982a342ef39764da9d16 --- /dev/null +++ b/doc/doc_ch/algorithm_det_drrg.md @@ -0,0 +1,78 @@ +# DRRG + +- [1. 算法简介](#1-算法简介) +- [2. 环境配置](#2-环境配置) +- [3. 模型训练、评估、预测](#3-模型训练评估预测) +- [4. 推理部署](#4-推理部署) + - [4.1 Python推理](#41-python推理) + - [4.2 C++推理](#42-c推理) + - [4.3 Serving服务化部署](#43-serving服务化部署) + - [4.4 更多推理部署](#44-更多推理部署) +- [5. FAQ](#5-faq) +- [引用](#引用) + + +## 1. 算法简介 + +论文信息: +> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493) +> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng +> CVPR, 2020 + +在CTW1500文本检测公开数据集上,算法复现效果如下: + +| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接| +|-----| --- | --- | --- | --- | --- | --- | +| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)| + + +## 2. 环境配置 +请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 + + + +## 3. 模型训练、评估、预测 + +上述DRRG模型使用CTW1500文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)。 + +数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。 + + + +## 4. 推理部署 + + +### 4.1 Python推理 + +由于模型前向运行时需要多次转换为Numpy数据进行运算,因此DRRG的动态图转静态图暂未支持。 + + +### 4.2 C++推理 + +暂未支持 + + +### 4.3 Serving服务化部署 + +暂未支持 + + +### 4.4 更多推理部署 + +暂未支持 + + +## 5. FAQ + + +## 引用 + +```bibtex +@inproceedings{zhang2020deep, + title={Deep relational reasoning graph network for arbitrary shape text detection}, + author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={9699--9708}, + year={2020} +} +``` diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index e9bcc275d1a7157628188c337a312a49408d207b..2dfece9da6b3bad7ca9b9ff8dd95cbb20a9f2a87 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -29,6 +29,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广 - [x] [SAST](./algorithm_det_sast.md) - [x] [PSENet](./algorithm_det_psenet.md) - [x] [FCENet](./algorithm_det_fcenet.md) +- [x] [DRRG](./algorithm_det_drrg.md) 在ICDAR2015文本检测公开数据集上,算法效果如下: @@ -54,6 +55,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广 |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| +|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)| **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) diff --git a/doc/doc_en/algorithm_det_drrg_en.md b/doc/doc_en/algorithm_det_drrg_en.md new file mode 100644 index 0000000000000000000000000000000000000000..2bb7b5703dab89526345e3dcbbb55d6c90ed1c0c --- /dev/null +++ b/doc/doc_en/algorithm_det_drrg_en.md @@ -0,0 +1,79 @@ +# DRRG + +- [1. Introduction](#1) +- [2. Environment](#2) +- [3. Model Training / Evaluation / Prediction](#3) + - [3.1 Training](#3-1) + - [3.2 Evaluation](#3-2) + - [3.3 Prediction](#3-3) +- [4. Inference and Deployment](#4) + - [4.1 Python Inference](#4-1) + - [4.2 C++ Inference](#4-2) + - [4.3 Serving](#4-3) + - [4.4 More](#4-4) +- [5. FAQ](#5) + + +## 1. Introduction + +Paper: +> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493) +> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng +> CVPR, 2020 + +On the CTW1500 dataset, the text detection result is as follows: + +|Model|Backbone|Configuration|Precision|Recall|Hmean|Download| +| --- | --- | --- | --- | --- | --- | --- | +| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)| + + +## 2. Environment +Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md). + + + +## 3. Model Training / Evaluation / Prediction + +The above DRRG model is trained using the CTW1500 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md). + +After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models. + + +## 4. Inference and Deployment + + +### 4.1 Python Inference + +Since the model needs to be converted to Numpy data for many times in the forward, DRRG dynamic graph to static graph is not supported. + + +### 4.2 C++ Inference + +Not supported + + +### 4.3 Serving + +Not supported + + +### 4.4 More + +Not supported + + +## 5. FAQ + + +## Citation + +```bibtex +@inproceedings{zhang2020deep, + title={Deep relational reasoning graph network for arbitrary shape text detection}, + author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={9699--9708}, + year={2020} +} +``` diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md index 90449e1729fcff898f27641d3f777c8f002f6a97..bbab2638418c32f871d73356f6fff17f9b98f685 100755 --- a/doc/doc_en/algorithm_overview_en.md +++ b/doc/doc_en/algorithm_overview_en.md @@ -27,6 +27,7 @@ Supported text detection algorithms (Click the link to get the tutorial): - [x] [SAST](./algorithm_det_sast_en.md) - [x] [PSENet](./algorithm_det_psenet_en.md) - [x] [FCENet](./algorithm_det_fcenet_en.md) +- [x] [DRRG](./algorithm_det_drrg_en.md) On the ICDAR2015 dataset, the text detection result is as follows: @@ -52,6 +53,7 @@ On CTW1500 dataset, the text detection result is as follows: |Model|Backbone|Precision|Recall|Hmean| Download link| | --- | --- | --- | --- | --- |---| |FCE|ResNet50_dcn|88.39%|82.18%|85.27%| [trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) | +|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)| **Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from: * [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi). diff --git a/ppocr/data/imaug/__init__.py b/ppocr/data/imaug/__init__.py index db0a489d5ff4cce5a51d8a2347a595efec61a1db..93d97446d44070b9c10064fbe10b0b5e05628a6a 100644 --- a/ppocr/data/imaug/__init__.py +++ b/ppocr/data/imaug/__init__.py @@ -45,6 +45,7 @@ from .vqa import * from .fce_aug import * from .fce_targets import FCENetTargets from .ct_process import * +from .drrg_targets import DRRGTargets def transform(data, ops=None): diff --git a/ppocr/data/imaug/drrg_targets.py b/ppocr/data/imaug/drrg_targets.py new file mode 100644 index 0000000000000000000000000000000000000000..c56e878b837328ef2efde40b96b5571dffbb4791 --- /dev/null +++ b/ppocr/data/imaug/drrg_targets.py @@ -0,0 +1,696 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/drrg_targets.py +""" + +import cv2 +import numpy as np +from lanms import merge_quadrangle_n9 as la_nms +from numpy.linalg import norm + + +class DRRGTargets(object): + def __init__(self, + orientation_thr=2.0, + resample_step=8.0, + num_min_comps=9, + num_max_comps=600, + min_width=8.0, + max_width=24.0, + center_region_shrink_ratio=0.3, + comp_shrink_ratio=1.0, + comp_w_h_ratio=0.3, + text_comp_nms_thr=0.25, + min_rand_half_height=8.0, + max_rand_half_height=24.0, + jitter_level=0.2, + **kwargs): + + super().__init__() + self.orientation_thr = orientation_thr + self.resample_step = resample_step + self.num_max_comps = num_max_comps + self.num_min_comps = num_min_comps + self.min_width = min_width + self.max_width = max_width + self.center_region_shrink_ratio = center_region_shrink_ratio + self.comp_shrink_ratio = comp_shrink_ratio + self.comp_w_h_ratio = comp_w_h_ratio + self.text_comp_nms_thr = text_comp_nms_thr + self.min_rand_half_height = min_rand_half_height + self.max_rand_half_height = max_rand_half_height + self.jitter_level = jitter_level + self.eps = 1e-8 + + def vector_angle(self, vec1, vec2): + if vec1.ndim > 1: + unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape((-1, 1)) + else: + unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps) + if vec2.ndim > 1: + unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape((-1, 1)) + else: + unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps) + return np.arccos( + np.clip( + np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0)) + + def vector_slope(self, vec): + assert len(vec) == 2 + return abs(vec[1] / (vec[0] + self.eps)) + + def vector_sin(self, vec): + assert len(vec) == 2 + return vec[1] / (norm(vec) + self.eps) + + def vector_cos(self, vec): + assert len(vec) == 2 + return vec[0] / (norm(vec) + self.eps) + + def find_head_tail(self, points, orientation_thr): + + assert points.ndim == 2 + assert points.shape[0] >= 4 + assert points.shape[1] == 2 + assert isinstance(orientation_thr, float) + + if len(points) > 4: + pad_points = np.vstack([points, points[0]]) + edge_vec = pad_points[1:] - pad_points[:-1] + + theta_sum = [] + adjacent_vec_theta = [] + for i, edge_vec1 in enumerate(edge_vec): + adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]] + adjacent_edge_vec = edge_vec[adjacent_ind] + temp_theta_sum = np.sum( + self.vector_angle(edge_vec1, adjacent_edge_vec)) + temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0], + adjacent_edge_vec[1]) + theta_sum.append(temp_theta_sum) + adjacent_vec_theta.append(temp_adjacent_theta) + theta_sum_score = np.array(theta_sum) / np.pi + adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi + poly_center = np.mean(points, axis=0) + edge_dist = np.maximum( + norm( + pad_points[1:] - poly_center, axis=-1), + norm( + pad_points[:-1] - poly_center, axis=-1)) + dist_score = edge_dist / (np.max(edge_dist) + self.eps) + position_score = np.zeros(len(edge_vec)) + score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score + score += 0.35 * dist_score + if len(points) % 2 == 0: + position_score[(len(score) // 2 - 1)] += 1 + position_score[-1] += 1 + score += 0.1 * position_score + pad_score = np.concatenate([score, score]) + score_matrix = np.zeros((len(score), len(score) - 3)) + x = np.arange(len(score) - 3) / float(len(score) - 4) + gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power( + (x - 0.5) / 0.5, 2.) / 2) + gaussian = gaussian / np.max(gaussian) + for i in range(len(score)): + score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len( + score) - 1)] * gaussian * 0.3 + + head_start, tail_increment = np.unravel_index(score_matrix.argmax(), + score_matrix.shape) + tail_start = (head_start + tail_increment + 2) % len(points) + head_end = (head_start + 1) % len(points) + tail_end = (tail_start + 1) % len(points) + + if head_end > tail_end: + head_start, tail_start = tail_start, head_start + head_end, tail_end = tail_end, head_end + head_inds = [head_start, head_end] + tail_inds = [tail_start, tail_end] + else: + if self.vector_slope(points[1] - points[0]) + self.vector_slope( + points[3] - points[2]) < self.vector_slope(points[ + 2] - points[1]) + self.vector_slope(points[0] - points[ + 3]): + horizontal_edge_inds = [[0, 1], [2, 3]] + vertical_edge_inds = [[3, 0], [1, 2]] + else: + horizontal_edge_inds = [[3, 0], [1, 2]] + vertical_edge_inds = [[0, 1], [2, 3]] + + vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[ + vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][ + 0]] - points[vertical_edge_inds[1][1]]) + horizontal_len_sum = norm(points[horizontal_edge_inds[0][ + 0]] - points[horizontal_edge_inds[0][1]]) + norm(points[ + horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1] + [1]]) + + if vertical_len_sum > horizontal_len_sum * orientation_thr: + head_inds = horizontal_edge_inds[0] + tail_inds = horizontal_edge_inds[1] + else: + head_inds = vertical_edge_inds[0] + tail_inds = vertical_edge_inds[1] + + return head_inds, tail_inds + + def reorder_poly_edge(self, points): + + assert points.ndim == 2 + assert points.shape[0] >= 4 + assert points.shape[1] == 2 + + head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr) + head_edge, tail_edge = points[head_inds], points[tail_inds] + + pad_points = np.vstack([points, points]) + if tail_inds[1] < 1: + tail_inds[1] = len(points) + sideline1 = pad_points[head_inds[1]:tail_inds[1]] + sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))] + sideline_mean_shift = np.mean( + sideline1, axis=0) - np.mean( + sideline2, axis=0) + + if sideline_mean_shift[1] > 0: + top_sideline, bot_sideline = sideline2, sideline1 + else: + top_sideline, bot_sideline = sideline1, sideline2 + + return head_edge, tail_edge, top_sideline, bot_sideline + + def cal_curve_length(self, line): + + assert line.ndim == 2 + assert len(line) >= 2 + + edges_length = np.sqrt((line[1:, 0] - line[:-1, 0])**2 + (line[ + 1:, 1] - line[:-1, 1])**2) + total_length = np.sum(edges_length) + return edges_length, total_length + + def resample_line(self, line, n): + + assert line.ndim == 2 + assert line.shape[0] >= 2 + assert line.shape[1] == 2 + assert isinstance(n, int) + assert n > 2 + + edges_length, total_length = self.cal_curve_length(line) + t_org = np.insert(np.cumsum(edges_length), 0, 0) + unit_t = total_length / (n - 1) + t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t + edge_ind = 0 + points = [line[0]] + for t in t_equidistant: + while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]: + edge_ind += 1 + t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1] + weight = np.array( + [t_r - t, t - t_l], dtype=np.float32) / (t_r - t_l + self.eps) + p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]]) + points.append(p_coords) + points.append(line[-1]) + resampled_line = np.vstack(points) + + return resampled_line + + def resample_sidelines(self, sideline1, sideline2, resample_step): + + assert sideline1.ndim == sideline2.ndim == 2 + assert sideline1.shape[1] == sideline2.shape[1] == 2 + assert sideline1.shape[0] >= 2 + assert sideline2.shape[0] >= 2 + assert isinstance(resample_step, float) + + _, length1 = self.cal_curve_length(sideline1) + _, length2 = self.cal_curve_length(sideline2) + + avg_length = (length1 + length2) / 2 + resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3) + + resampled_line1 = self.resample_line(sideline1, resample_point_num) + resampled_line2 = self.resample_line(sideline2, resample_point_num) + + return resampled_line1, resampled_line2 + + def dist_point2line(self, point, line): + + assert isinstance(line, tuple) + point1, point2 = line + d = abs(np.cross(point2 - point1, point - point1)) / ( + norm(point2 - point1) + 1e-8) + return d + + def draw_center_region_maps(self, top_line, bot_line, center_line, + center_region_mask, top_height_map, + bot_height_map, sin_map, cos_map, + region_shrink_ratio): + + assert top_line.shape == bot_line.shape == center_line.shape + assert (center_region_mask.shape == top_height_map.shape == + bot_height_map.shape == sin_map.shape == cos_map.shape) + assert isinstance(region_shrink_ratio, float) + + h, w = center_region_mask.shape + for i in range(0, len(center_line) - 1): + + top_mid_point = (top_line[i] + top_line[i + 1]) / 2 + bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2 + + sin_theta = self.vector_sin(top_mid_point - bot_mid_point) + cos_theta = self.vector_cos(top_mid_point - bot_mid_point) + + tl = center_line[i] + (top_line[i] - center_line[i] + ) * region_shrink_ratio + tr = center_line[i + 1] + (top_line[i + 1] - center_line[i + 1] + ) * region_shrink_ratio + br = center_line[i + 1] + (bot_line[i + 1] - center_line[i + 1] + ) * region_shrink_ratio + bl = center_line[i] + (bot_line[i] - center_line[i] + ) * region_shrink_ratio + current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32) + + cv2.fillPoly(center_region_mask, [current_center_box], color=1) + cv2.fillPoly(sin_map, [current_center_box], color=sin_theta) + cv2.fillPoly(cos_map, [current_center_box], color=cos_theta) + + current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0, + w - 1) + current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0, + h - 1) + min_coord = np.min(current_center_box, axis=0).astype(np.int32) + max_coord = np.max(current_center_box, axis=0).astype(np.int32) + current_center_box = current_center_box - min_coord + box_sz = (max_coord - min_coord + 1) + + center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8) + cv2.fillPoly(center_box_mask, [current_center_box], color=1) + + inds = np.argwhere(center_box_mask > 0) + inds = inds + (min_coord[1], min_coord[0]) + inds_xy = np.fliplr(inds) + top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( + inds_xy, (top_line[i], top_line[i + 1])) + bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( + inds_xy, (bot_line[i], bot_line[i + 1])) + + def generate_center_mask_attrib_maps(self, img_size, text_polys): + + assert isinstance(img_size, tuple) + + h, w = img_size + + center_lines = [] + center_region_mask = np.zeros((h, w), np.uint8) + top_height_map = np.zeros((h, w), dtype=np.float32) + bot_height_map = np.zeros((h, w), dtype=np.float32) + sin_map = np.zeros((h, w), dtype=np.float32) + cos_map = np.zeros((h, w), dtype=np.float32) + + for poly in text_polys: + polygon_points = poly + _, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) + resampled_top_line, resampled_bot_line = self.resample_sidelines( + top_line, bot_line, self.resample_step) + resampled_bot_line = resampled_bot_line[::-1] + center_line = (resampled_top_line + resampled_bot_line) / 2 + + if self.vector_slope(center_line[-1] - center_line[0]) > 2: + if (center_line[-1] - center_line[0])[1] < 0: + center_line = center_line[::-1] + resampled_top_line = resampled_top_line[::-1] + resampled_bot_line = resampled_bot_line[::-1] + else: + if (center_line[-1] - center_line[0])[0] < 0: + center_line = center_line[::-1] + resampled_top_line = resampled_top_line[::-1] + resampled_bot_line = resampled_bot_line[::-1] + + line_head_shrink_len = np.clip( + (norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio), + self.min_width, self.max_width) / 2 + line_tail_shrink_len = np.clip( + (norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio), + self.min_width, self.max_width) / 2 + num_head_shrink = int(line_head_shrink_len // self.resample_step) + num_tail_shrink = int(line_tail_shrink_len // self.resample_step) + if len(center_line) > num_head_shrink + num_tail_shrink + 2: + center_line = center_line[num_head_shrink:len(center_line) - + num_tail_shrink] + resampled_top_line = resampled_top_line[num_head_shrink:len( + resampled_top_line) - num_tail_shrink] + resampled_bot_line = resampled_bot_line[num_head_shrink:len( + resampled_bot_line) - num_tail_shrink] + center_lines.append(center_line.astype(np.int32)) + + self.draw_center_region_maps( + resampled_top_line, resampled_bot_line, center_line, + center_region_mask, top_height_map, bot_height_map, sin_map, + cos_map, self.center_region_shrink_ratio) + + return (center_lines, center_region_mask, top_height_map, + bot_height_map, sin_map, cos_map) + + def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask): + + assert isinstance(num_rand_comps, int) + assert num_rand_comps > 0 + assert center_sample_mask.ndim == 2 + + h, w = center_sample_mask.shape + + max_rand_half_height = self.max_rand_half_height + min_rand_half_height = self.min_rand_half_height + max_rand_height = max_rand_half_height * 2 + max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, + self.min_width, self.max_width) + margin = int( + np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1 + + if 2 * margin + 1 > min(h, w): + + assert min(h, w) > (np.sqrt(2) * (self.min_width + 1)) + max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1) + min_rand_half_height = max(max_rand_half_height / 4, + self.min_width / 2) + + max_rand_height = max_rand_half_height * 2 + max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, + self.min_width, self.max_width) + margin = int( + np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1 + + inner_center_sample_mask = np.zeros_like(center_sample_mask) + inner_center_sample_mask[margin:h - margin, margin:w - margin] = \ + center_sample_mask[margin:h - margin, margin:w - margin] + kernel_size = int(np.clip(max_rand_half_height, 7, 21)) + inner_center_sample_mask = cv2.erode( + inner_center_sample_mask, + np.ones((kernel_size, kernel_size), np.uint8)) + + center_candidates = np.argwhere(inner_center_sample_mask > 0) + num_center_candidates = len(center_candidates) + sample_inds = np.random.choice(num_center_candidates, num_rand_comps) + rand_centers = center_candidates[sample_inds] + + rand_top_height = np.random.randint( + min_rand_half_height, + max_rand_half_height, + size=(len(rand_centers), 1)) + rand_bot_height = np.random.randint( + min_rand_half_height, + max_rand_half_height, + size=(len(rand_centers), 1)) + + rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 + rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 + scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8)) + rand_cos = rand_cos * scale + rand_sin = rand_sin * scale + + height = (rand_top_height + rand_bot_height) + width = np.clip(height * self.comp_w_h_ratio, self.min_width, + self.max_width) + + rand_comp_attribs = np.hstack([ + rand_centers[:, ::-1], height, width, rand_cos, rand_sin, + np.zeros_like(rand_sin) + ]).astype(np.float32) + + return rand_comp_attribs + + def jitter_comp_attribs(self, comp_attribs, jitter_level): + """Jitter text components attributes. + + Args: + comp_attribs (ndarray): The text component attributes. + jitter_level (float): The jitter level of text components + attributes. + + Returns: + jittered_comp_attribs (ndarray): The jittered text component + attributes (x, y, h, w, cos, sin, comp_label). + """ + + assert comp_attribs.shape[1] == 7 + assert comp_attribs.shape[0] > 0 + assert isinstance(jitter_level, float) + + x = comp_attribs[:, 0].reshape((-1, 1)) + y = comp_attribs[:, 1].reshape((-1, 1)) + h = comp_attribs[:, 2].reshape((-1, 1)) + w = comp_attribs[:, 3].reshape((-1, 1)) + cos = comp_attribs[:, 4].reshape((-1, 1)) + sin = comp_attribs[:, 5].reshape((-1, 1)) + comp_labels = comp_attribs[:, 6].reshape((-1, 1)) + + x += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * ( + h * np.abs(cos) + w * np.abs(sin)) * jitter_level + y += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * ( + h * np.abs(sin) + w * np.abs(cos)) * jitter_level + + h += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 + ) * h * jitter_level + w += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 + ) * w * jitter_level + + cos += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 + ) * 2 * jitter_level + sin += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 + ) * 2 * jitter_level + + scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8)) + cos = cos * scale + sin = sin * scale + + jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels]) + + return jittered_comp_attribs + + def generate_comp_attribs(self, center_lines, text_mask, center_region_mask, + top_height_map, bot_height_map, sin_map, cos_map): + """Generate text component attributes. + + Args: + center_lines (list[ndarray]): The list of text center lines . + text_mask (ndarray): The text region mask. + center_region_mask (ndarray): The text center region mask. + top_height_map (ndarray): The map on which the distance from points + to top side lines will be drawn for each pixel in text center + regions. + bot_height_map (ndarray): The map on which the distance from points + to bottom side lines will be drawn for each pixel in text + center regions. + sin_map (ndarray): The sin(theta) map where theta is the angle + between vector (top point - bottom point) and vector (1, 0). + cos_map (ndarray): The cos(theta) map where theta is the angle + between vector (top point - bottom point) and vector (1, 0). + + Returns: + pad_comp_attribs (ndarray): The padded text component attributes + of a fixed size. + """ + + assert isinstance(center_lines, list) + assert ( + text_mask.shape == center_region_mask.shape == top_height_map.shape + == bot_height_map.shape == sin_map.shape == cos_map.shape) + + center_lines_mask = np.zeros_like(center_region_mask) + cv2.polylines(center_lines_mask, center_lines, 0, 1, 1) + center_lines_mask = center_lines_mask * center_region_mask + comp_centers = np.argwhere(center_lines_mask > 0) + + y = comp_centers[:, 0] + x = comp_centers[:, 1] + + top_height = top_height_map[y, x].reshape( + (-1, 1)) * self.comp_shrink_ratio + bot_height = bot_height_map[y, x].reshape( + (-1, 1)) * self.comp_shrink_ratio + sin = sin_map[y, x].reshape((-1, 1)) + cos = cos_map[y, x].reshape((-1, 1)) + + top_mid_points = comp_centers + np.hstack( + [top_height * sin, top_height * cos]) + bot_mid_points = comp_centers - np.hstack( + [bot_height * sin, bot_height * cos]) + + width = (top_height + bot_height) * self.comp_w_h_ratio + width = np.clip(width, self.min_width, self.max_width) + r = width / 2 + + tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) + tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) + br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) + bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) + text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32) + + score = np.ones((text_comps.shape[0], 1), dtype=np.float32) + text_comps = np.hstack([text_comps, score]) + text_comps = la_nms(text_comps, self.text_comp_nms_thr) + + if text_comps.shape[0] >= 1: + img_h, img_w = center_region_mask.shape + text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1) + text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1) + + comp_centers = np.mean( + text_comps[:, 0:8].reshape((-1, 4, 2)), axis=1).astype(np.int32) + x = comp_centers[:, 0] + y = comp_centers[:, 1] + + height = (top_height_map[y, x] + bot_height_map[y, x]).reshape( + (-1, 1)) + width = np.clip(height * self.comp_w_h_ratio, self.min_width, + self.max_width) + + cos = cos_map[y, x].reshape((-1, 1)) + sin = sin_map[y, x].reshape((-1, 1)) + + _, comp_label_mask = cv2.connectedComponents( + center_region_mask, connectivity=8) + comp_labels = comp_label_mask[y, x].reshape( + (-1, 1)).astype(np.float32) + + x = x.reshape((-1, 1)).astype(np.float32) + y = y.reshape((-1, 1)).astype(np.float32) + comp_attribs = np.hstack( + [x, y, height, width, cos, sin, comp_labels]) + comp_attribs = self.jitter_comp_attribs(comp_attribs, + self.jitter_level) + + if comp_attribs.shape[0] < self.num_min_comps: + num_rand_comps = self.num_min_comps - comp_attribs.shape[0] + rand_comp_attribs = self.generate_rand_comp_attribs( + num_rand_comps, 1 - text_mask) + comp_attribs = np.vstack([comp_attribs, rand_comp_attribs]) + else: + comp_attribs = self.generate_rand_comp_attribs(self.num_min_comps, + 1 - text_mask) + + num_comps = (np.ones( + (comp_attribs.shape[0], 1), + dtype=np.float32) * comp_attribs.shape[0]) + comp_attribs = np.hstack([num_comps, comp_attribs]) + + if comp_attribs.shape[0] > self.num_max_comps: + comp_attribs = comp_attribs[:self.num_max_comps, :] + comp_attribs[:, 0] = self.num_max_comps + + pad_comp_attribs = np.zeros( + (self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32) + pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs + + return pad_comp_attribs + + def generate_text_region_mask(self, img_size, text_polys): + """Generate text center region mask and geometry attribute maps. + + Args: + img_size (tuple): The image size (height, width). + text_polys (list[list[ndarray]]): The list of text polygons. + + Returns: + text_region_mask (ndarray): The text region mask. + """ + + assert isinstance(img_size, tuple) + + h, w = img_size + text_region_mask = np.zeros((h, w), dtype=np.uint8) + + for poly in text_polys: + polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) + cv2.fillPoly(text_region_mask, polygon, 1) + + return text_region_mask + + def generate_effective_mask(self, mask_size: tuple, polygons_ignore): + """Generate effective mask by setting the ineffective regions to 0 and + effective regions to 1. + + Args: + mask_size (tuple): The mask size. + polygons_ignore (list[[ndarray]]: The list of ignored text + polygons. + + Returns: + mask (ndarray): The effective mask of (height, width). + """ + mask = np.ones(mask_size, dtype=np.uint8) + + for poly in polygons_ignore: + instance = poly.astype(np.int32).reshape(1, -1, 2) + cv2.fillPoly(mask, instance, 0) + + return mask + + def generate_targets(self, data): + """Generate the gt targets for DRRG. + + Args: + data (dict): The input result dictionary. + + Returns: + data (dict): The output result dictionary. + """ + + assert isinstance(data, dict) + + image = data['image'] + polygons = data['polys'] + ignore_tags = data['ignore_tags'] + h, w, _ = image.shape + + polygon_masks = [] + polygon_masks_ignore = [] + for tag, polygon in zip(ignore_tags, polygons): + if tag is True: + polygon_masks_ignore.append(polygon) + else: + polygon_masks.append(polygon) + + gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks) + gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore) + (center_lines, gt_center_region_mask, gt_top_height_map, + gt_bot_height_map, gt_sin_map, + gt_cos_map) = self.generate_center_mask_attrib_maps((h, w), + polygon_masks) + + gt_comp_attribs = self.generate_comp_attribs( + center_lines, gt_text_mask, gt_center_region_mask, + gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map) + + mapping = { + 'gt_text_mask': gt_text_mask, + 'gt_center_region_mask': gt_center_region_mask, + 'gt_mask': gt_mask, + 'gt_top_height_map': gt_top_height_map, + 'gt_bot_height_map': gt_bot_height_map, + 'gt_sin_map': gt_sin_map, + 'gt_cos_map': gt_cos_map + } + + data.update(mapping) + data['gt_comp_attribs'] = gt_comp_attribs + return data + + def __call__(self, data): + data = self.generate_targets(data) + return data diff --git a/ppocr/ext_op/__init__.py b/ppocr/ext_op/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8307f3810bf56d34773d89c1049da3dabb1db7d2 --- /dev/null +++ b/ppocr/ext_op/__init__.py @@ -0,0 +1 @@ +from .roi_align_rotated.roi_align_rotated import RoIAlignRotated diff --git a/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cc b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cc new file mode 100644 index 0000000000000000000000000000000000000000..2de86c53730c58bc58b0b6bd5e0098435339d4f9 --- /dev/null +++ b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cc @@ -0,0 +1,528 @@ + +// This code is refer from: +// https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp + +#include +#include +#include + +#include "paddle/extension.h" + +#define PADDLE_WITH_CUDA +#define CHECK_INPUT_SAME(x1, x2) \ + PD_CHECK(x1.place() == x2.place(), "input must be smae pacle.") +#define CHECK_INPUT_CPU(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.") + +template struct PreCalc { + int pos1; + int pos2; + int pos3; + int pos4; + T w1; + T w2; + T w3; + T w4; +}; + +template +void pre_calc_for_bilinear_interpolate( + const int height, const int width, const int pooled_height, + const int pooled_width, const int iy_upper, const int ix_upper, + T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w, + int roi_bin_grid_h, int roi_bin_grid_w, T roi_center_h, T roi_center_w, + T cos_theta, T sin_theta, std::vector> &pre_calc) { + int pre_calc_index = 0; + for (int ph = 0; ph < pooled_height; ph++) { + for (int pw = 0; pw < pooled_width; pw++) { + for (int iy = 0; iy < iy_upper; iy++) { + const T yy = roi_start_h + ph * bin_size_h + + static_cast(iy + .5f) * bin_size_h / + static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 + for (int ix = 0; ix < ix_upper; ix++) { + const T xx = roi_start_w + pw * bin_size_w + + static_cast(ix + .5f) * bin_size_w / + static_cast(roi_bin_grid_w); + + // Rotate by theta around the center and translate + // In image space, (y, x) is the order for Right Handed System, + // and this is essentially multiplying the point by a rotation matrix + // to rotate it counterclockwise through angle theta. + T y = yy * cos_theta - xx * sin_theta + roi_center_h; + T x = yy * sin_theta + xx * cos_theta + roi_center_w; + // deal with: inverse elements are out of feature map boundary + if (y < -1.0 || y > height || x < -1.0 || x > width) { + // empty + PreCalc pc; + pc.pos1 = 0; + pc.pos2 = 0; + pc.pos3 = 0; + pc.pos4 = 0; + pc.w1 = 0; + pc.w2 = 0; + pc.w3 = 0; + pc.w4 = 0; + pre_calc[pre_calc_index] = pc; + pre_calc_index += 1; + continue; + } + + if (y < 0) { + y = 0; + } + if (x < 0) { + x = 0; + } + + int y_low = (int)y; + int x_low = (int)x; + int y_high; + int x_high; + + if (y_low >= height - 1) { + y_high = y_low = height - 1; + y = (T)y_low; + } else { + y_high = y_low + 1; + } + + if (x_low >= width - 1) { + x_high = x_low = width - 1; + x = (T)x_low; + } else { + x_high = x_low + 1; + } + + T ly = y - y_low; + T lx = x - x_low; + T hy = 1. - ly, hx = 1. - lx; + T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; + + // save weights and indices + PreCalc pc; + pc.pos1 = y_low * width + x_low; + pc.pos2 = y_low * width + x_high; + pc.pos3 = y_high * width + x_low; + pc.pos4 = y_high * width + x_high; + pc.w1 = w1; + pc.w2 = w2; + pc.w3 = w3; + pc.w4 = w4; + pre_calc[pre_calc_index] = pc; + + pre_calc_index += 1; + } + } + } + } +} + +template +void roi_align_rotated_cpu_forward(const int nthreads, const T *input, + const T &spatial_scale, const bool aligned, + const bool clockwise, const int channels, + const int height, const int width, + const int pooled_height, + const int pooled_width, + const int sampling_ratio, const T *rois, + T *output) { + int n_rois = nthreads / channels / pooled_width / pooled_height; + // (n, c, ph, pw) is an element in the pooled output + // can be parallelized using omp + // #pragma omp parallel for num_threads(32) + for (int n = 0; n < n_rois; n++) { + int index_n = n * channels * pooled_width * pooled_height; + + const T *current_roi = rois + n * 6; + int roi_batch_ind = current_roi[0]; + + // Do not use rounding; this implementation detail is critical + T offset = aligned ? (T)0.5 : (T)0.0; + T roi_center_w = current_roi[1] * spatial_scale - offset; + T roi_center_h = current_roi[2] * spatial_scale - offset; + T roi_width = current_roi[3] * spatial_scale; + T roi_height = current_roi[4] * spatial_scale; + T theta = current_roi[5]; + if (clockwise) { + theta = -theta; // If clockwise, the angle needs to be reversed. + } + T cos_theta = cos(theta); + T sin_theta = sin(theta); + + if (aligned) { + assert(roi_width >= 0 && roi_height >= 0); + } else { // for backward-compatibility only + roi_width = std::max(roi_width, (T)1.); + roi_height = std::max(roi_height, (T)1.); + } + + T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); + T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); + + // We use roi_bin_grid to sample the grid and mimic integral + int roi_bin_grid_h = (sampling_ratio > 0) + ? sampling_ratio + : ceilf(roi_height / pooled_height); // e.g., = 2 + int roi_bin_grid_w = + (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width); + + // We do average (integral) pooling inside a bin + const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 + + // we want to precalculate indices and weights shared by all channels, + // this is the key point of optimization + std::vector> pre_calc(roi_bin_grid_h * roi_bin_grid_w * + pooled_width * pooled_height); + + // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). + // Appropriate translation needs to be applied after. + T roi_start_h = -roi_height / 2.0; + T roi_start_w = -roi_width / 2.0; + + pre_calc_for_bilinear_interpolate( + height, width, pooled_height, pooled_width, roi_bin_grid_h, + roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w, + roi_bin_grid_h, roi_bin_grid_w, roi_center_h, roi_center_w, cos_theta, + sin_theta, pre_calc); + + for (int c = 0; c < channels; c++) { + int index_n_c = index_n + c * pooled_width * pooled_height; + const T *offset_input = + input + (roi_batch_ind * channels + c) * height * width; + int pre_calc_index = 0; + + for (int ph = 0; ph < pooled_height; ph++) { + for (int pw = 0; pw < pooled_width; pw++) { + int index = index_n_c + ph * pooled_width + pw; + + T output_val = 0.; + for (int iy = 0; iy < roi_bin_grid_h; iy++) { + for (int ix = 0; ix < roi_bin_grid_w; ix++) { + PreCalc pc = pre_calc[pre_calc_index]; + output_val += pc.w1 * offset_input[pc.pos1] + + pc.w2 * offset_input[pc.pos2] + + pc.w3 * offset_input[pc.pos3] + + pc.w4 * offset_input[pc.pos4]; + + pre_calc_index += 1; + } + } + output_val /= count; + + output[index] = output_val; + } // for pw + } // for ph + } // for c + } // for n +} + +template +void bilinear_interpolate_gradient(const int height, const int width, T y, T x, + T &w1, T &w2, T &w3, T &w4, int &x_low, + int &x_high, int &y_low, int &y_high) { + // deal with cases that inverse elements are out of feature map boundary + if (y < -1.0 || y > height || x < -1.0 || x > width) { + // empty + w1 = w2 = w3 = w4 = 0.; + x_low = x_high = y_low = y_high = -1; + return; + } + + if (y < 0) { + y = 0; + } + + if (x < 0) { + x = 0; + } + + y_low = (int)y; + x_low = (int)x; + + if (y_low >= height - 1) { + y_high = y_low = height - 1; + y = (T)y_low; + } else { + y_high = y_low + 1; + } + + if (x_low >= width - 1) { + x_high = x_low = width - 1; + x = (T)x_low; + } else { + x_high = x_low + 1; + } + + T ly = y - y_low; + T lx = x - x_low; + T hy = 1. - ly, hx = 1. - lx; + + // reference in forward + // T v1 = input[y_low * width + x_low]; + // T v2 = input[y_low * width + x_high]; + // T v3 = input[y_high * width + x_low]; + // T v4 = input[y_high * width + x_high]; + // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + + w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; + + return; +} + +template inline void add(T *address, const T &val) { + *address += val; +} + +template +void roi_align_rotated_cpu_backward( + const int nthreads, + // may not be contiguous. should index using n_stride, etc + const T *grad_output, const T &spatial_scale, const bool aligned, + const bool clockwise, const int channels, const int height, const int width, + const int pooled_height, const int pooled_width, const int sampling_ratio, + T *grad_input, const T *rois, const int n_stride, const int c_stride, + const int h_stride, const int w_stride) { + for (int index = 0; index < nthreads; index++) { + // (n, c, ph, pw) is an element in the pooled output + int pw = index % pooled_width; + int ph = (index / pooled_width) % pooled_height; + int c = (index / pooled_width / pooled_height) % channels; + int n = index / pooled_width / pooled_height / channels; + + const T *current_roi = rois + n * 6; + int roi_batch_ind = current_roi[0]; + + // Do not use rounding; this implementation detail is critical + T offset = aligned ? (T)0.5 : (T)0.0; + T roi_center_w = current_roi[1] * spatial_scale - offset; + T roi_center_h = current_roi[2] * spatial_scale - offset; + T roi_width = current_roi[3] * spatial_scale; + T roi_height = current_roi[4] * spatial_scale; + T theta = current_roi[5]; + if (clockwise) { + theta = -theta; // If clockwise, the angle needs to be reversed. + } + T cos_theta = cos(theta); + T sin_theta = sin(theta); + + if (aligned) { + assert(roi_width >= 0 && roi_height >= 0); + } else { // for backward-compatibility only + roi_width = std::max(roi_width, (T)1.); + roi_height = std::max(roi_height, (T)1.); + } + + T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); + T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); + + T *offset_grad_input = + grad_input + ((roi_batch_ind * channels + c) * height * width); + + int output_offset = n * n_stride + c * c_stride; + const T *offset_grad_output = grad_output + output_offset; + const T grad_output_this_bin = + offset_grad_output[ph * h_stride + pw * w_stride]; + + // We use roi_bin_grid to sample the grid and mimic integral + int roi_bin_grid_h = (sampling_ratio > 0) + ? sampling_ratio + : ceilf(roi_height / pooled_height); // e.g., = 2 + int roi_bin_grid_w = + (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width); + + // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). + // Appropriate translation needs to be applied after. + T roi_start_h = -roi_height / 2.0; + T roi_start_w = -roi_width / 2.0; + + // We do average (integral) pooling inside a bin + const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 + + for (int iy = 0; iy < roi_bin_grid_h; iy++) { + const T yy = roi_start_h + ph * bin_size_h + + static_cast(iy + .5f) * bin_size_h / + static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 + for (int ix = 0; ix < roi_bin_grid_w; ix++) { + const T xx = roi_start_w + pw * bin_size_w + + static_cast(ix + .5f) * bin_size_w / + static_cast(roi_bin_grid_w); + + // Rotate by theta around the center and translate + T y = yy * cos_theta - xx * sin_theta + roi_center_h; + T x = yy * sin_theta + xx * cos_theta + roi_center_w; + + T w1, w2, w3, w4; + int x_low, x_high, y_low, y_high; + + bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4, + x_low, x_high, y_low, y_high); + + T g1 = grad_output_this_bin * w1 / count; + T g2 = grad_output_this_bin * w2 / count; + T g3 = grad_output_this_bin * w3 / count; + T g4 = grad_output_this_bin * w4 / count; + + if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { + // atomic add is not needed for now since it is single threaded + add(offset_grad_input + y_low * width + x_low, static_cast(g1)); + add(offset_grad_input + y_low * width + x_high, static_cast(g2)); + add(offset_grad_input + y_high * width + x_low, static_cast(g3)); + add(offset_grad_input + y_high * width + x_high, static_cast(g4)); + } // if + } // ix + } // iy + } // for +} // ROIAlignRotatedBackward + +std::vector +RoIAlignRotatedCPUForward(const paddle::Tensor &input, + const paddle::Tensor &rois, int aligned_height, + int aligned_width, float spatial_scale, + int sampling_ratio, bool aligned, bool clockwise) { + CHECK_INPUT_CPU(input); + CHECK_INPUT_CPU(rois); + + auto num_rois = rois.shape()[0]; + + auto channels = input.shape()[1]; + auto height = input.shape()[2]; + auto width = input.shape()[3]; + + auto output = + paddle::empty({num_rois, channels, aligned_height, aligned_width}, + input.type(), paddle::CPUPlace()); + auto output_size = output.numel(); + + PD_DISPATCH_FLOATING_TYPES( + input.type(), "roi_align_rotated_cpu_forward", ([&] { + roi_align_rotated_cpu_forward( + output_size, input.data(), + static_cast(spatial_scale), aligned, clockwise, channels, + height, width, aligned_height, aligned_width, sampling_ratio, + rois.data(), output.data()); + })); + + return {output}; +} + +std::vector RoIAlignRotatedCPUBackward( + const paddle::Tensor &input, const paddle::Tensor &rois, + const paddle::Tensor &grad_output, int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) { + + auto batch_size = input.shape()[0]; + auto channels = input.shape()[1]; + auto height = input.shape()[2]; + auto width = input.shape()[3]; + + auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0, + input.type(), paddle::CPUPlace()); + + // get stride values to ensure indexing into gradients is correct. + int n_stride = grad_output.shape()[0]; + int c_stride = grad_output.shape()[1]; + int h_stride = grad_output.shape()[2]; + int w_stride = grad_output.shape()[3]; + + PD_DISPATCH_FLOATING_TYPES( + grad_output.type(), "roi_align_rotated_cpu_backward", [&] { + roi_align_rotated_cpu_backward( + grad_output.numel(), grad_output.data(), + static_cast(spatial_scale), aligned, clockwise, channels, + height, width, aligned_height, aligned_width, sampling_ratio, + grad_input.data(), rois.data(), n_stride, c_stride, + h_stride, w_stride); + }); + return {grad_input}; +} + +#ifdef PADDLE_WITH_CUDA +std::vector +RoIAlignRotatedCUDAForward(const paddle::Tensor &input, + const paddle::Tensor &rois, int aligned_height, + int aligned_width, float spatial_scale, + int sampling_ratio, bool aligned, bool clockwise); +#endif + +#ifdef PADDLE_WITH_CUDA +std::vector RoIAlignRotatedCUDABackward( + const paddle::Tensor &input, const paddle::Tensor &rois, + const paddle::Tensor &grad_output, int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, bool aligned, bool clockwise); +#endif + +std::vector +RoIAlignRotatedForward(const paddle::Tensor &input, const paddle::Tensor &rois, + int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, bool aligned, + bool clockwise) { + CHECK_INPUT_SAME(input, rois); + if (input.is_cpu()) { + return RoIAlignRotatedCPUForward(input, rois, aligned_height, aligned_width, + spatial_scale, sampling_ratio, aligned, + clockwise); +#ifdef PADDLE_WITH_CUDA + } else if (input.is_gpu()) { + return RoIAlignRotatedCUDAForward(input, rois, aligned_height, + aligned_width, spatial_scale, + sampling_ratio, aligned, clockwise); +#endif + } else { + PD_THROW("Unsupported device type for forward function of roi align " + "rotated operator."); + } +} + +std::vector +RoIAlignRotatedBackward(const paddle::Tensor &input, const paddle::Tensor &rois, + const paddle::Tensor &grad_output, int aligned_height, + int aligned_width, float spatial_scale, + int sampling_ratio, bool aligned, bool clockwise) { + CHECK_INPUT_SAME(input, rois); + if (input.is_cpu()) { + return RoIAlignRotatedCPUBackward(input, rois, grad_output, aligned_height, + aligned_width, spatial_scale, + sampling_ratio, aligned, clockwise); +#ifdef PADDLE_WITH_CUDA + } else if (input.is_gpu()) { + return RoIAlignRotatedCUDABackward(input, rois, grad_output, aligned_height, + aligned_width, spatial_scale, + sampling_ratio, aligned, clockwise); +#endif + } else { + PD_THROW("Unsupported device type for forward function of roi align " + "rotated operator."); + } +} + +std::vector> InferShape(std::vector input_shape, + std::vector rois_shape) { + return {{rois_shape[0], input_shape[1], input_shape[2], input_shape[3]}}; +} + +std::vector> +InferBackShape(std::vector input_shape, + std::vector rois_shape) { + return {input_shape}; +} + +std::vector InferDtype(paddle::DataType input_dtype, + paddle::DataType rois_dtype) { + return {input_dtype}; +} + +PD_BUILD_OP(roi_align_rotated) + .Inputs({"Input", "Rois"}) + .Outputs({"Output"}) + .Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float", + "sampling_ratio: int", "aligned: bool", "clockwise: bool"}) + .SetKernelFn(PD_KERNEL(RoIAlignRotatedForward)) + .SetInferShapeFn(PD_INFER_SHAPE(InferShape)) + .SetInferDtypeFn(PD_INFER_DTYPE(InferDtype)); + +PD_BUILD_GRAD_OP(roi_align_rotated) + .Inputs({"Input", "Rois", paddle::Grad("Output")}) + .Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float", + "sampling_ratio: int", "aligned: bool", "clockwise: bool"}) + .Outputs({paddle::Grad("Input")}) + .SetKernelFn(PD_KERNEL(RoIAlignRotatedBackward)) + .SetInferShapeFn(PD_INFER_SHAPE(InferBackShape)); diff --git a/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cu b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cu new file mode 100644 index 0000000000000000000000000000000000000000..17bd47dc08be732bdb228da9696ee2d163179c73 --- /dev/null +++ b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.cu @@ -0,0 +1,380 @@ + +// This code is refer from: +// https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh + +#include +#include +#include + +#include "paddle/extension.h" +#include + +#define CUDA_1D_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ + i += blockDim.x * gridDim.x) + +#define THREADS_PER_BLOCK 512 + +inline int GET_BLOCKS(const int N) { + int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; + int max_block_num = 4096; + return min(optimal_block_num, max_block_num); +} + +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600 + +static __inline__ __device__ double atomicAdd(double *address, double val) { + unsigned long long int *address_as_ull = (unsigned long long int *)address; + unsigned long long int old = *address_as_ull, assumed; + if (val == 0.0) + return __longlong_as_double(old); + do { + assumed = old; + old = atomicCAS(address_as_ull, assumed, + __double_as_longlong(val + __longlong_as_double(assumed))); + } while (assumed != old); + return __longlong_as_double(old); +} + +#endif + +template +__device__ T bilinear_interpolate(const T *input, const int height, + const int width, T y, T x, + const int index /* index for debug only*/) { + // deal with cases that inverse elements are out of feature map boundary + if (y < -1.0 || y > height || x < -1.0 || x > width) + return 0; + + if (y <= 0) + y = 0; + if (x <= 0) + x = 0; + + int y_low = (int)y; + int x_low = (int)x; + int y_high; + int x_high; + + if (y_low >= height - 1) { + y_high = y_low = height - 1; + y = (T)y_low; + } else { + y_high = y_low + 1; + } + + if (x_low >= width - 1) { + x_high = x_low = width - 1; + x = (T)x_low; + } else { + x_high = x_low + 1; + } + + T ly = y - y_low; + T lx = x - x_low; + T hy = 1. - ly, hx = 1. - lx; + // do bilinear interpolation + T v1 = input[y_low * width + x_low]; + T v2 = input[y_low * width + x_high]; + T v3 = input[y_high * width + x_low]; + T v4 = input[y_high * width + x_high]; + T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; + + T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + + return val; +} + +template +__device__ void +bilinear_interpolate_gradient(const int height, const int width, T y, T x, + T &w1, T &w2, T &w3, T &w4, int &x_low, + int &x_high, int &y_low, int &y_high, + const int index /* index for debug only*/) { + // deal with cases that inverse elements are out of feature map boundary + if (y < -1.0 || y > height || x < -1.0 || x > width) { + // empty + w1 = w2 = w3 = w4 = 0.; + x_low = x_high = y_low = y_high = -1; + return; + } + + if (y <= 0) + y = 0; + if (x <= 0) + x = 0; + + y_low = (int)y; + x_low = (int)x; + + if (y_low >= height - 1) { + y_high = y_low = height - 1; + y = (T)y_low; + } else { + y_high = y_low + 1; + } + + if (x_low >= width - 1) { + x_high = x_low = width - 1; + x = (T)x_low; + } else { + x_high = x_low + 1; + } + + T ly = y - y_low; + T lx = x - x_low; + T hy = 1. - ly, hx = 1. - lx; + + // reference in forward + // T v1 = input[y_low * width + x_low]; + // T v2 = input[y_low * width + x_high]; + // T v3 = input[y_high * width + x_low]; + // T v4 = input[y_high * width + x_high]; + // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); + + w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; + + return; +} + +/*** Forward ***/ +template +__global__ void roi_align_rotated_cuda_forward_kernel( + const int nthreads, const scalar_t *bottom_data, + const scalar_t *bottom_rois, const scalar_t spatial_scale, + const int sample_num, const bool aligned, const bool clockwise, + const int channels, const int height, const int width, + const int pooled_height, const int pooled_width, scalar_t *top_data) { + CUDA_1D_KERNEL_LOOP(index, nthreads) { + // (n, c, ph, pw) is an element in the pooled output + int pw = index % pooled_width; + int ph = (index / pooled_width) % pooled_height; + int c = (index / pooled_width / pooled_height) % channels; + int n = index / pooled_width / pooled_height / channels; + + const scalar_t *offset_bottom_rois = bottom_rois + n * 6; + int roi_batch_ind = offset_bottom_rois[0]; + + // Do not using rounding; this implementation detail is critical + scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; + scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; + scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; + scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; + scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; + // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; + scalar_t theta = offset_bottom_rois[5]; + if (clockwise) { + theta = -theta; // If clockwise, the angle needs to be reversed. + } + if (!aligned) { // for backward-compatibility only + // Force malformed ROIs to be 1x1 + roi_width = max(roi_width, (scalar_t)1.); + roi_height = max(roi_height, (scalar_t)1.); + } + scalar_t bin_size_h = static_cast(roi_height) / + static_cast(pooled_height); + scalar_t bin_size_w = + static_cast(roi_width) / static_cast(pooled_width); + + const scalar_t *offset_bottom_data = + bottom_data + (roi_batch_ind * channels + c) * height * width; + + // We use roi_bin_grid to sample the grid and mimic integral + int roi_bin_grid_h = (sample_num > 0) + ? sample_num + : ceilf(roi_height / pooled_height); // e.g., = 2 + int roi_bin_grid_w = + (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); + + // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). + // Appropriate translation needs to be applied after. + scalar_t roi_start_h = -roi_height / 2.0; + scalar_t roi_start_w = -roi_width / 2.0; + scalar_t cosscalar_theta = cos(theta); + scalar_t sinscalar_theta = sin(theta); + + // We do average (integral) pooling inside a bin + const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 + + scalar_t output_val = 0.; + for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 + const scalar_t yy = + roi_start_h + ph * bin_size_h + + static_cast(iy + .5f) * bin_size_h / + static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 + for (int ix = 0; ix < roi_bin_grid_w; ix++) { + const scalar_t xx = roi_start_w + pw * bin_size_w + + static_cast(ix + .5f) * bin_size_w / + static_cast(roi_bin_grid_w); + + // Rotate by theta (counterclockwise) around the center and translate + scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h; + scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w; + + scalar_t val = bilinear_interpolate( + offset_bottom_data, height, width, y, x, index); + output_val += val; + } + } + output_val /= count; + + top_data[index] = output_val; + } +} + +/*** Backward ***/ +template +__global__ void roi_align_rotated_backward_cuda_kernel( + const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois, + const scalar_t spatial_scale, const int sample_num, const bool aligned, + const bool clockwise, const int channels, const int height, const int width, + const int pooled_height, const int pooled_width, scalar_t *bottom_diff) { + CUDA_1D_KERNEL_LOOP(index, nthreads) { + // (n, c, ph, pw) is an element in the pooled output + int pw = index % pooled_width; + int ph = (index / pooled_width) % pooled_height; + int c = (index / pooled_width / pooled_height) % channels; + int n = index / pooled_width / pooled_height / channels; + + const scalar_t *offset_bottom_rois = bottom_rois + n * 6; + int roi_batch_ind = offset_bottom_rois[0]; + + // Do not round + scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; + scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; + scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; + scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; + scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; + // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; + scalar_t theta = offset_bottom_rois[5]; + if (clockwise) { + theta = -theta; // If clockwise, the angle needs to be reversed. + } + if (!aligned) { // for backward-compatibility only + // Force malformed ROIs to be 1x1 + roi_width = max(roi_width, (scalar_t)1.); + roi_height = max(roi_height, (scalar_t)1.); + } + scalar_t bin_size_h = static_cast(roi_height) / + static_cast(pooled_height); + scalar_t bin_size_w = + static_cast(roi_width) / static_cast(pooled_width); + + scalar_t *offset_bottom_diff = + bottom_diff + (roi_batch_ind * channels + c) * height * width; + + int top_offset = (n * channels + c) * pooled_height * pooled_width; + const scalar_t *offset_top_diff = top_diff + top_offset; + const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; + + // We use roi_bin_grid to sample the grid and mimic integral + int roi_bin_grid_h = (sample_num > 0) + ? sample_num + : ceilf(roi_height / pooled_height); // e.g., = 2 + int roi_bin_grid_w = + (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); + + // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). + // Appropriate translation needs to be applied after. + scalar_t roi_start_h = -roi_height / 2.0; + scalar_t roi_start_w = -roi_width / 2.0; + scalar_t cosTheta = cos(theta); + scalar_t sinTheta = sin(theta); + + // We do average (integral) pooling inside a bin + const scalar_t count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 + + for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 + const scalar_t yy = + roi_start_h + ph * bin_size_h + + static_cast(iy + .5f) * bin_size_h / + static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 + for (int ix = 0; ix < roi_bin_grid_w; ix++) { + const scalar_t xx = roi_start_w + pw * bin_size_w + + static_cast(ix + .5f) * bin_size_w / + static_cast(roi_bin_grid_w); + + // Rotate by theta around the center and translate + scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h; + scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w; + + scalar_t w1, w2, w3, w4; + int x_low, x_high, y_low, y_high; + + bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, + w4, x_low, x_high, y_low, + y_high, index); + + scalar_t g1 = top_diff_this_bin * w1 / count; + scalar_t g2 = top_diff_this_bin * w2 / count; + scalar_t g3 = top_diff_this_bin * w3 / count; + scalar_t g4 = top_diff_this_bin * w4 / count; + + if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { + atomicAdd(offset_bottom_diff + y_low * width + x_low, g1); + atomicAdd(offset_bottom_diff + y_low * width + x_high, g2); + atomicAdd(offset_bottom_diff + y_high * width + x_low, g3); + atomicAdd(offset_bottom_diff + y_high * width + x_high, g4); + } // if + } // ix + } // iy + } // CUDA_1D_KERNEL_LOOP +} // RoIAlignBackward + +std::vector +RoIAlignRotatedCUDAForward(const paddle::Tensor &input, + const paddle::Tensor &rois, int aligned_height, + int aligned_width, float spatial_scale, + int sampling_ratio, bool aligned, bool clockwise) { + + auto num_rois = rois.shape()[0]; + + auto channels = input.shape()[1]; + auto height = input.shape()[2]; + auto width = input.shape()[3]; + + auto output = + paddle::empty({num_rois, channels, aligned_height, aligned_width}, + input.type(), paddle::GPUPlace()); + auto output_size = output.numel(); + + PD_DISPATCH_FLOATING_TYPES( + input.type(), "roi_align_rotated_cuda_forward_kernel", ([&] { + roi_align_rotated_cuda_forward_kernel< + data_t><<>>( + output_size, input.data(), rois.data(), + static_cast(spatial_scale), sampling_ratio, aligned, + clockwise, channels, height, width, aligned_height, aligned_width, + output.data()); + })); + + return {output}; +} + +std::vector RoIAlignRotatedCUDABackward( + const paddle::Tensor &input, const paddle::Tensor &rois, + const paddle::Tensor &grad_output, int aligned_height, int aligned_width, + float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) { + + auto num_rois = rois.shape()[0]; + + auto batch_size = input.shape()[0]; + auto channels = input.shape()[1]; + auto height = input.shape()[2]; + auto width = input.shape()[3]; + + auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0, + input.type(), paddle::GPUPlace()); + + const int output_size = num_rois * aligned_height * aligned_width * channels; + + PD_DISPATCH_FLOATING_TYPES( + grad_output.type(), "roi_align_rotated_backward_cuda_kernel", ([&] { + roi_align_rotated_backward_cuda_kernel< + data_t><<>>( + output_size, grad_output.data(), rois.data(), + spatial_scale, sampling_ratio, aligned, clockwise, channels, height, + width, aligned_height, aligned_width, grad_input.data()); + })); + return {grad_input}; +} \ No newline at end of file diff --git a/ppocr/ext_op/roi_align_rotated/roi_align_rotated.py b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.py new file mode 100644 index 0000000000000000000000000000000000000000..dcca285c75f9c68ff15409810edcec887eed2026 --- /dev/null +++ b/ppocr/ext_op/roi_align_rotated/roi_align_rotated.py @@ -0,0 +1,66 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/roi_align_rotated.py +""" + +import paddle +import paddle.nn as nn +from paddle.utils.cpp_extension import load +custom_ops = load( + name="custom_jit_ops", + sources=[ + "ppocr/ext_op/roi_align_rotated/roi_align_rotated.cc", + "ppocr/ext_op/roi_align_rotated/roi_align_rotated.cu" + ]) + +roi_align_rotated = custom_ops.roi_align_rotated + + +class RoIAlignRotated(nn.Layer): + """RoI align pooling layer for rotated proposals. + + """ + + def __init__(self, + out_size, + spatial_scale, + sample_num=0, + aligned=True, + clockwise=False): + super(RoIAlignRotated, self).__init__() + + if isinstance(out_size, int): + self.out_h = out_size + self.out_w = out_size + elif isinstance(out_size, tuple): + assert len(out_size) == 2 + assert isinstance(out_size[0], int) + assert isinstance(out_size[1], int) + self.out_h, self.out_w = out_size + else: + raise TypeError( + '"out_size" must be an integer or tuple of integers') + + self.spatial_scale = float(spatial_scale) + self.sample_num = int(sample_num) + self.aligned = aligned + self.clockwise = clockwise + + def forward(self, feats, rois): + output = roi_align_rotated(feats, rois, self.out_h, self.out_w, + self.spatial_scale, self.sample_num, + self.aligned, self.clockwise) + return output diff --git a/ppocr/losses/__init__.py b/ppocr/losses/__init__.py index ffee0a93e3993d075be8be510513bbb00012fc74..6abaa408b3f6995a0b4c377206e8a1551b48c56b 100755 --- a/ppocr/losses/__init__.py +++ b/ppocr/losses/__init__.py @@ -26,6 +26,7 @@ from .det_sast_loss import SASTLoss from .det_pse_loss import PSELoss from .det_fce_loss import FCELoss from .det_ct_loss import CTLoss +from .det_drrg_loss import DRRGLoss # rec loss from .rec_ctc_loss import CTCLoss @@ -70,7 +71,7 @@ def build_loss(config): 'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss', 'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss', 'TableMasterLoss', 'SPINAttentionLoss', 'VLLoss', 'StrokeFocusLoss', - 'SLALoss', 'CTLoss', 'RFLLoss' + 'SLALoss', 'CTLoss', 'RFLLoss', 'DRRGLoss' ] config = copy.deepcopy(config) module_name = config.pop('name') diff --git a/ppocr/losses/det_drrg_loss.py b/ppocr/losses/det_drrg_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..89d4b521c7d1d0f29104abc3f315379827f98af7 --- /dev/null +++ b/ppocr/losses/det_drrg_loss.py @@ -0,0 +1,224 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/drrg_loss.py +""" + +import paddle +import paddle.nn.functional as F +from paddle import nn + + +class DRRGLoss(nn.Layer): + def __init__(self, ohem_ratio=3.0): + super().__init__() + self.ohem_ratio = ohem_ratio + self.downsample_ratio = 1.0 + + def balance_bce_loss(self, pred, gt, mask): + """Balanced Binary-CrossEntropy Loss. + + Args: + pred (Tensor): Shape of :math:`(1, H, W)`. + gt (Tensor): Shape of :math:`(1, H, W)`. + mask (Tensor): Shape of :math:`(1, H, W)`. + + Returns: + Tensor: Balanced bce loss. + """ + assert pred.shape == gt.shape == mask.shape + assert paddle.all(pred >= 0) and paddle.all(pred <= 1) + assert paddle.all(gt >= 0) and paddle.all(gt <= 1) + positive = gt * mask + negative = (1 - gt) * mask + positive_count = int(positive.sum()) + + if positive_count > 0: + loss = F.binary_cross_entropy(pred, gt, reduction='none') + positive_loss = paddle.sum(loss * positive) + negative_loss = loss * negative + negative_count = min( + int(negative.sum()), int(positive_count * self.ohem_ratio)) + else: + positive_loss = paddle.to_tensor(0.0) + loss = F.binary_cross_entropy(pred, gt, reduction='none') + negative_loss = loss * negative + negative_count = 100 + negative_loss, _ = paddle.topk( + negative_loss.reshape([-1]), negative_count) + + balance_loss = (positive_loss + paddle.sum(negative_loss)) / ( + float(positive_count + negative_count) + 1e-5) + + return balance_loss + + def gcn_loss(self, gcn_data): + """CrossEntropy Loss from gcn module. + + Args: + gcn_data (tuple(Tensor, Tensor)): The first is the + prediction with shape :math:`(N, 2)` and the + second is the gt label with shape :math:`(m, n)` + where :math:`m * n = N`. + + Returns: + Tensor: CrossEntropy loss. + """ + gcn_pred, gt_labels = gcn_data + gt_labels = gt_labels.reshape([-1]) + loss = F.cross_entropy(gcn_pred, gt_labels) + + return loss + + def bitmasks2tensor(self, bitmasks, target_sz): + """Convert Bitmasks to tensor. + + Args: + bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is + for one img. + target_sz (tuple(int, int)): The target tensor of size + :math:`(H, W)`. + + Returns: + list[Tensor]: The list of kernel tensors. Each element stands for + one kernel level. + """ + batch_size = len(bitmasks) + results = [] + + kernel = [] + for batch_inx in range(batch_size): + mask = bitmasks[batch_inx] + # hxw + mask_sz = mask.shape + # left, right, top, bottom + pad = [0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]] + mask = F.pad(mask, pad, mode='constant', value=0) + kernel.append(mask) + kernel = paddle.stack(kernel) + results.append(kernel) + + return results + + def forward(self, preds, labels): + """Compute Drrg loss. + """ + + assert isinstance(preds, tuple) + gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map = labels[ + 1:8] + + downsample_ratio = self.downsample_ratio + + pred_maps, gcn_data = preds + pred_text_region = pred_maps[:, 0, :, :] + pred_center_region = pred_maps[:, 1, :, :] + pred_sin_map = pred_maps[:, 2, :, :] + pred_cos_map = pred_maps[:, 3, :, :] + pred_top_height_map = pred_maps[:, 4, :, :] + pred_bot_height_map = pred_maps[:, 5, :, :] + feature_sz = pred_maps.shape + + # bitmask 2 tensor + mapping = { + 'gt_text_mask': paddle.cast(gt_text_mask, 'float32'), + 'gt_center_region_mask': + paddle.cast(gt_center_region_mask, 'float32'), + 'gt_mask': paddle.cast(gt_mask, 'float32'), + 'gt_top_height_map': paddle.cast(gt_top_height_map, 'float32'), + 'gt_bot_height_map': paddle.cast(gt_bot_height_map, 'float32'), + 'gt_sin_map': paddle.cast(gt_sin_map, 'float32'), + 'gt_cos_map': paddle.cast(gt_cos_map, 'float32') + } + gt = {} + for key, value in mapping.items(): + gt[key] = value + if abs(downsample_ratio - 1.0) < 1e-2: + gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) + else: + gt[key] = [item.rescale(downsample_ratio) for item in gt[key]] + gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) + if key in ['gt_top_height_map', 'gt_bot_height_map']: + gt[key] = [item * downsample_ratio for item in gt[key]] + gt[key] = [item for item in gt[key]] + + scale = paddle.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8)) + pred_sin_map = pred_sin_map * scale + pred_cos_map = pred_cos_map * scale + + loss_text = self.balance_bce_loss( + F.sigmoid(pred_text_region), gt['gt_text_mask'][0], + gt['gt_mask'][0]) + + text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0]) + negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0]) + loss_center_map = F.binary_cross_entropy( + F.sigmoid(pred_center_region), + gt['gt_center_region_mask'][0], + reduction='none') + if int(text_mask.sum()) > 0: + loss_center_positive = paddle.sum(loss_center_map * + text_mask) / paddle.sum(text_mask) + else: + loss_center_positive = paddle.to_tensor(0.0) + loss_center_negative = paddle.sum( + loss_center_map * + negative_text_mask) / paddle.sum(negative_text_mask) + loss_center = loss_center_positive + 0.5 * loss_center_negative + + center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0]) + if int(center_mask.sum()) > 0: + map_sz = pred_top_height_map.shape + ones = paddle.ones(map_sz, dtype='float32') + loss_top = F.smooth_l1_loss( + pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2), + ones, + reduction='none') + loss_bot = F.smooth_l1_loss( + pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2), + ones, + reduction='none') + gt_height = ( + gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0]) + loss_height = paddle.sum( + (paddle.log(gt_height + 1) * + (loss_top + loss_bot)) * center_mask) / paddle.sum(center_mask) + + loss_sin = paddle.sum( + F.smooth_l1_loss( + pred_sin_map, gt['gt_sin_map'][0], + reduction='none') * center_mask) / paddle.sum(center_mask) + loss_cos = paddle.sum( + F.smooth_l1_loss( + pred_cos_map, gt['gt_cos_map'][0], + reduction='none') * center_mask) / paddle.sum(center_mask) + else: + loss_height = paddle.to_tensor(0.0) + loss_sin = paddle.to_tensor(0.0) + loss_cos = paddle.to_tensor(0.0) + + loss_gcn = self.gcn_loss(gcn_data) + + loss = loss_text + loss_center + loss_height + loss_sin + loss_cos + loss_gcn + results = dict( + loss=loss, + loss_text=loss_text, + loss_center=loss_center, + loss_height=loss_height, + loss_sin=loss_sin, + loss_cos=loss_cos, + loss_gcn=loss_gcn) + + return results diff --git a/ppocr/modeling/heads/__init__.py b/ppocr/modeling/heads/__init__.py index ba180566c0c522154e7c16dc0eb4a6ec6cc5fe3d..63002140c5be4bd7e32b56995c6410ecc8a0fa36 100755 --- a/ppocr/modeling/heads/__init__.py +++ b/ppocr/modeling/heads/__init__.py @@ -24,6 +24,7 @@ def build_head(config): from .det_fce_head import FCEHead from .e2e_pg_head import PGHead from .det_ct_head import CT_Head + from .det_drrg_head import DRRGHead # rec head from .rec_ctc_head import CTCHead @@ -54,7 +55,8 @@ def build_head(config): 'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer', 'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead', 'MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead', - 'VLHead', 'SLAHead', 'RobustScannerHead', 'CT_Head', 'RFLHead' + 'VLHead', 'SLAHead', 'RobustScannerHead', 'CT_Head', 'RFLHead', + 'DRRGHead' ] #table head diff --git a/ppocr/modeling/heads/det_drrg_head.py b/ppocr/modeling/heads/det_drrg_head.py new file mode 100644 index 0000000000000000000000000000000000000000..3aee1f8cb7734fd6093cd6ed11e5492ef5cd9785 --- /dev/null +++ b/ppocr/modeling/heads/det_drrg_head.py @@ -0,0 +1,191 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/dense_heads/drrg_head.py +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import warnings +import cv2 +import numpy as np +import paddle +import paddle.nn as nn +import paddle.nn.functional as F +from .gcn import GCN +from .local_graph import LocalGraphs +from .proposal_local_graph import ProposalLocalGraphs + + +class DRRGHead(nn.Layer): + def __init__(self, + in_channels, + k_at_hops=(8, 4), + num_adjacent_linkages=3, + node_geo_feat_len=120, + pooling_scale=1.0, + pooling_output_size=(4, 3), + nms_thr=0.3, + min_width=8.0, + max_width=24.0, + comp_shrink_ratio=1.03, + comp_ratio=0.4, + comp_score_thr=0.3, + text_region_thr=0.2, + center_region_thr=0.2, + center_region_area_thr=50, + local_graph_thr=0.7, + **kwargs): + super().__init__() + + assert isinstance(in_channels, int) + assert isinstance(k_at_hops, tuple) + assert isinstance(num_adjacent_linkages, int) + assert isinstance(node_geo_feat_len, int) + assert isinstance(pooling_scale, float) + assert isinstance(pooling_output_size, tuple) + assert isinstance(comp_shrink_ratio, float) + assert isinstance(nms_thr, float) + assert isinstance(min_width, float) + assert isinstance(max_width, float) + assert isinstance(comp_ratio, float) + assert isinstance(comp_score_thr, float) + assert isinstance(text_region_thr, float) + assert isinstance(center_region_thr, float) + assert isinstance(center_region_area_thr, int) + assert isinstance(local_graph_thr, float) + + self.in_channels = in_channels + self.out_channels = 6 + self.downsample_ratio = 1.0 + self.k_at_hops = k_at_hops + self.num_adjacent_linkages = num_adjacent_linkages + self.node_geo_feat_len = node_geo_feat_len + self.pooling_scale = pooling_scale + self.pooling_output_size = pooling_output_size + self.comp_shrink_ratio = comp_shrink_ratio + self.nms_thr = nms_thr + self.min_width = min_width + self.max_width = max_width + self.comp_ratio = comp_ratio + self.comp_score_thr = comp_score_thr + self.text_region_thr = text_region_thr + self.center_region_thr = center_region_thr + self.center_region_area_thr = center_region_area_thr + self.local_graph_thr = local_graph_thr + + self.out_conv = nn.Conv2D( + in_channels=self.in_channels, + out_channels=self.out_channels, + kernel_size=1, + stride=1, + padding=0) + + self.graph_train = LocalGraphs( + self.k_at_hops, self.num_adjacent_linkages, self.node_geo_feat_len, + self.pooling_scale, self.pooling_output_size, self.local_graph_thr) + + self.graph_test = ProposalLocalGraphs( + self.k_at_hops, self.num_adjacent_linkages, self.node_geo_feat_len, + self.pooling_scale, self.pooling_output_size, self.nms_thr, + self.min_width, self.max_width, self.comp_shrink_ratio, + self.comp_ratio, self.comp_score_thr, self.text_region_thr, + self.center_region_thr, self.center_region_area_thr) + + pool_w, pool_h = self.pooling_output_size + node_feat_len = (pool_w * pool_h) * ( + self.in_channels + self.out_channels) + self.node_geo_feat_len + self.gcn = GCN(node_feat_len) + + def forward(self, inputs, targets=None): + """ + Args: + inputs (Tensor): Shape of :math:`(N, C, H, W)`. + gt_comp_attribs (list[ndarray]): The padded text component + attributes. Shape: (num_component, 8). + + Returns: + tuple: Returns (pred_maps, (gcn_pred, gt_labels)). + + - | pred_maps (Tensor): Prediction map with shape + :math:`(N, C_{out}, H, W)`. + - | gcn_pred (Tensor): Prediction from GCN module, with + shape :math:`(N, 2)`. + - | gt_labels (Tensor): Ground-truth label with shape + :math:`(N, 8)`. + """ + if self.training: + assert targets is not None + gt_comp_attribs = targets[7] + pred_maps = self.out_conv(inputs) + feat_maps = paddle.concat([inputs, pred_maps], axis=1) + node_feats, adjacent_matrices, knn_inds, gt_labels = self.graph_train( + feat_maps, np.stack(gt_comp_attribs)) + + gcn_pred = self.gcn(node_feats, adjacent_matrices, knn_inds) + + return pred_maps, (gcn_pred, gt_labels) + else: + return self.single_test(inputs) + + def single_test(self, feat_maps): + r""" + Args: + feat_maps (Tensor): Shape of :math:`(N, C, H, W)`. + + Returns: + tuple: Returns (edge, score, text_comps). + + - | edge (ndarray): The edge array of shape :math:`(N, 2)` + where each row is a pair of text component indices + that makes up an edge in graph. + - | score (ndarray): The score array of shape :math:`(N,)`, + corresponding to the edge above. + - | text_comps (ndarray): The text components of shape + :math:`(N, 9)` where each row corresponds to one box and + its score: (x1, y1, x2, y2, x3, y3, x4, y4, score). + """ + pred_maps = self.out_conv(feat_maps) + feat_maps = paddle.concat([feat_maps, pred_maps], axis=1) + + none_flag, graph_data = self.graph_test(pred_maps, feat_maps) + + (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, + pivot_local_graphs, text_comps) = graph_data + + if none_flag: + return None, None, None + gcn_pred = self.gcn(local_graphs_node_feat, adjacent_matrices, + pivots_knn_inds) + pred_labels = F.softmax(gcn_pred, axis=1) + + edges = [] + scores = [] + pivot_local_graphs = pivot_local_graphs.squeeze().numpy() + + for pivot_ind, pivot_local_graph in enumerate(pivot_local_graphs): + pivot = pivot_local_graph[0] + for k_ind, neighbor_ind in enumerate(pivots_knn_inds[pivot_ind]): + neighbor = pivot_local_graph[neighbor_ind.item()] + edges.append([pivot, neighbor]) + scores.append(pred_labels[pivot_ind * pivots_knn_inds.shape[1] + + k_ind, 1].item()) + + edges = np.asarray(edges) + scores = np.asarray(scores) + + return edges, scores, text_comps diff --git a/ppocr/modeling/heads/gcn.py b/ppocr/modeling/heads/gcn.py new file mode 100644 index 0000000000000000000000000000000000000000..d123f067cb7640575e7b6cfdeb0ab1826ab62aab --- /dev/null +++ b/ppocr/modeling/heads/gcn.py @@ -0,0 +1,113 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/gcn.py +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + + +class BatchNorm1D(nn.BatchNorm1D): + def __init__(self, + num_features, + eps=1e-05, + momentum=0.1, + affine=True, + track_running_stats=True): + momentum = 1 - momentum + weight_attr = None + bias_attr = None + if not affine: + weight_attr = paddle.ParamAttr(learning_rate=0.0) + bias_attr = paddle.ParamAttr(learning_rate=0.0) + super().__init__( + num_features, + momentum=momentum, + epsilon=eps, + weight_attr=weight_attr, + bias_attr=bias_attr, + use_global_stats=track_running_stats) + + +class MeanAggregator(nn.Layer): + def forward(self, features, A): + x = paddle.bmm(A, features) + return x + + +class GraphConv(nn.Layer): + def __init__(self, in_dim, out_dim): + super().__init__() + self.in_dim = in_dim + self.out_dim = out_dim + self.weight = self.create_parameter( + [in_dim * 2, out_dim], + default_initializer=nn.initializer.XavierUniform()) + self.bias = self.create_parameter( + [out_dim], + is_bias=True, + default_initializer=nn.initializer.Assign([0] * out_dim)) + + self.aggregator = MeanAggregator() + + def forward(self, features, A): + b, n, d = features.shape + assert d == self.in_dim + agg_feats = self.aggregator(features, A) + cat_feats = paddle.concat([features, agg_feats], axis=2) + out = paddle.einsum('bnd,df->bnf', cat_feats, self.weight) + out = F.relu(out + self.bias) + return out + + +class GCN(nn.Layer): + def __init__(self, feat_len): + super(GCN, self).__init__() + self.bn0 = BatchNorm1D(feat_len, affine=False) + self.conv1 = GraphConv(feat_len, 512) + self.conv2 = GraphConv(512, 256) + self.conv3 = GraphConv(256, 128) + self.conv4 = GraphConv(128, 64) + self.classifier = nn.Sequential( + nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2)) + + def forward(self, x, A, knn_inds): + + num_local_graphs, num_max_nodes, feat_len = x.shape + + x = x.reshape([-1, feat_len]) + x = self.bn0(x) + x = x.reshape([num_local_graphs, num_max_nodes, feat_len]) + + x = self.conv1(x, A) + x = self.conv2(x, A) + x = self.conv3(x, A) + x = self.conv4(x, A) + k = knn_inds.shape[-1] + mid_feat_len = x.shape[-1] + edge_feat = paddle.zeros([num_local_graphs, k, mid_feat_len]) + for graph_ind in range(num_local_graphs): + edge_feat[graph_ind, :, :] = x[graph_ind][paddle.to_tensor(knn_inds[ + graph_ind])] + edge_feat = edge_feat.reshape([-1, mid_feat_len]) + pred = self.classifier(edge_feat) + + return pred diff --git a/ppocr/modeling/heads/local_graph.py b/ppocr/modeling/heads/local_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..50fe6d72236df7afc2de3fda9e2e5db404641f34 --- /dev/null +++ b/ppocr/modeling/heads/local_graph.py @@ -0,0 +1,388 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/local_graph.py +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import paddle +import paddle.nn as nn +from ppocr.ext_op import RoIAlignRotated + + +def normalize_adjacent_matrix(A): + assert A.ndim == 2 + assert A.shape[0] == A.shape[1] + + A = A + np.eye(A.shape[0]) + d = np.sum(A, axis=0) + d = np.clip(d, 0, None) + d_inv = np.power(d, -0.5).flatten() + d_inv[np.isinf(d_inv)] = 0.0 + d_inv = np.diag(d_inv) + G = A.dot(d_inv).transpose().dot(d_inv) + return G + + +def euclidean_distance_matrix(A, B): + """Calculate the Euclidean distance matrix. + + Args: + A (ndarray): The point sequence. + B (ndarray): The point sequence with the same dimensions as A. + + returns: + D (ndarray): The Euclidean distance matrix. + """ + assert A.ndim == 2 + assert B.ndim == 2 + assert A.shape[1] == B.shape[1] + + m = A.shape[0] + n = B.shape[0] + + A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n)) + B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1)) + D_squared = A_dots + B_dots - 2 * A.dot(B.T) + + zero_mask = np.less(D_squared, 0.0) + D_squared[zero_mask] = 0.0 + D = np.sqrt(D_squared) + return D + + +def feature_embedding(input_feats, out_feat_len): + """Embed features. This code was partially adapted from + https://github.com/GXYM/DRRG licensed under the MIT license. + + Args: + input_feats (ndarray): The input features of shape (N, d), where N is + the number of nodes in graph, d is the input feature vector length. + out_feat_len (int): The length of output feature vector. + + Returns: + embedded_feats (ndarray): The embedded features. + """ + assert input_feats.ndim == 2 + assert isinstance(out_feat_len, int) + assert out_feat_len >= input_feats.shape[1] + + num_nodes = input_feats.shape[0] + feat_dim = input_feats.shape[1] + feat_repeat_times = out_feat_len // feat_dim + residue_dim = out_feat_len % feat_dim + + if residue_dim > 0: + embed_wave = np.array([ + np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1) + for j in range(feat_repeat_times + 1) + ]).reshape((feat_repeat_times + 1, 1, 1)) + repeat_feats = np.repeat( + np.expand_dims( + input_feats, axis=0), feat_repeat_times, axis=0) + residue_feats = np.hstack([ + input_feats[:, 0:residue_dim], np.zeros( + (num_nodes, feat_dim - residue_dim)) + ]) + residue_feats = np.expand_dims(residue_feats, axis=0) + repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0) + embedded_feats = repeat_feats / embed_wave + embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2]) + embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2]) + embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape( + (num_nodes, -1))[:, 0:out_feat_len] + else: + embed_wave = np.array([ + np.power(1000, 2.0 * (j // 2) / feat_repeat_times) + for j in range(feat_repeat_times) + ]).reshape((feat_repeat_times, 1, 1)) + repeat_feats = np.repeat( + np.expand_dims( + input_feats, axis=0), feat_repeat_times, axis=0) + embedded_feats = repeat_feats / embed_wave + embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2]) + embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2]) + embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape( + (num_nodes, -1)).astype(np.float32) + + return embedded_feats + + +class LocalGraphs: + def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len, + pooling_scale, pooling_output_size, local_graph_thr): + + assert len(k_at_hops) == 2 + assert all(isinstance(n, int) for n in k_at_hops) + assert isinstance(num_adjacent_linkages, int) + assert isinstance(node_geo_feat_len, int) + assert isinstance(pooling_scale, float) + assert all(isinstance(n, int) for n in pooling_output_size) + assert isinstance(local_graph_thr, float) + + self.k_at_hops = k_at_hops + self.num_adjacent_linkages = num_adjacent_linkages + self.node_geo_feat_dim = node_geo_feat_len + self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale) + self.local_graph_thr = local_graph_thr + + def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels): + """Generate local graphs for GCN to predict which instance a text + component belongs to. + + Args: + sorted_dist_inds (ndarray): The complete graph node indices, which + is sorted according to the Euclidean distance. + gt_comp_labels(ndarray): The ground truth labels define the + instance to which the text components (nodes in graphs) belong. + + Returns: + pivot_local_graphs(list[list[int]]): The list of local graph + neighbor indices of pivots. + pivot_knns(list[list[int]]): The list of k-nearest neighbor indices + of pivots. + """ + + assert sorted_dist_inds.ndim == 2 + assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] == + gt_comp_labels.shape[0]) + + knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1] + pivot_local_graphs = [] + pivot_knns = [] + for pivot_ind, knn in enumerate(knn_graph): + + local_graph_neighbors = set(knn) + + for neighbor_ind in knn: + local_graph_neighbors.update( + set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] + + 1])) + + local_graph_neighbors.discard(pivot_ind) + pivot_local_graph = list(local_graph_neighbors) + pivot_local_graph.insert(0, pivot_ind) + pivot_knn = [pivot_ind] + list(knn) + + if pivot_ind < 1: + pivot_local_graphs.append(pivot_local_graph) + pivot_knns.append(pivot_knn) + else: + add_flag = True + for graph_ind, added_knn in enumerate(pivot_knns): + added_pivot_ind = added_knn[0] + added_local_graph = pivot_local_graphs[graph_ind] + + union = len( + set(pivot_local_graph[1:]).union( + set(added_local_graph[1:]))) + intersect = len( + set(pivot_local_graph[1:]).intersection( + set(added_local_graph[1:]))) + local_graph_iou = intersect / (union + 1e-8) + + if (local_graph_iou > self.local_graph_thr and + pivot_ind in added_knn and + gt_comp_labels[added_pivot_ind] == + gt_comp_labels[pivot_ind] and + gt_comp_labels[pivot_ind] != 0): + add_flag = False + break + if add_flag: + pivot_local_graphs.append(pivot_local_graph) + pivot_knns.append(pivot_knn) + + return pivot_local_graphs, pivot_knns + + def generate_gcn_input(self, node_feat_batch, node_label_batch, + local_graph_batch, knn_batch, sorted_dist_ind_batch): + """Generate graph convolution network input data. + + Args: + node_feat_batch (List[Tensor]): The batched graph node features. + node_label_batch (List[ndarray]): The batched text component + labels. + local_graph_batch (List[List[list[int]]]): The local graph node + indices of image batch. + knn_batch (List[List[list[int]]]): The knn graph node indices of + image batch. + sorted_dist_ind_batch (list[ndarray]): The node indices sorted + according to the Euclidean distance. + + Returns: + local_graphs_node_feat (Tensor): The node features of graph. + adjacent_matrices (Tensor): The adjacent matrices of local graphs. + pivots_knn_inds (Tensor): The k-nearest neighbor indices in + local graph. + gt_linkage (Tensor): The surpervision signal of GCN for linkage + prediction. + """ + assert isinstance(node_feat_batch, list) + assert isinstance(node_label_batch, list) + assert isinstance(local_graph_batch, list) + assert isinstance(knn_batch, list) + assert isinstance(sorted_dist_ind_batch, list) + + num_max_nodes = max([ + len(pivot_local_graph) + for pivot_local_graphs in local_graph_batch + for pivot_local_graph in pivot_local_graphs + ]) + + local_graphs_node_feat = [] + adjacent_matrices = [] + pivots_knn_inds = [] + pivots_gt_linkage = [] + + for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch): + node_feats = node_feat_batch[batch_ind] + pivot_local_graphs = local_graph_batch[batch_ind] + pivot_knns = knn_batch[batch_ind] + node_labels = node_label_batch[batch_ind] + + for graph_ind, pivot_knn in enumerate(pivot_knns): + pivot_local_graph = pivot_local_graphs[graph_ind] + num_nodes = len(pivot_local_graph) + pivot_ind = pivot_local_graph[0] + node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)} + + knn_inds = paddle.to_tensor( + [node2ind_map[i] for i in pivot_knn[1:]]) + pivot_feats = node_feats[pivot_ind] + normalized_feats = node_feats[paddle.to_tensor( + pivot_local_graph)] - pivot_feats + + adjacent_matrix = np.zeros( + (num_nodes, num_nodes), dtype=np.float32) + for node in pivot_local_graph: + neighbors = sorted_dist_inds[node, 1: + self.num_adjacent_linkages + 1] + for neighbor in neighbors: + if neighbor in pivot_local_graph: + + adjacent_matrix[node2ind_map[node], node2ind_map[ + neighbor]] = 1 + adjacent_matrix[node2ind_map[neighbor], + node2ind_map[node]] = 1 + + adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix) + pad_adjacent_matrix = paddle.zeros( + (num_max_nodes, num_max_nodes)) + pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast( + paddle.to_tensor(adjacent_matrix), 'float32') + + pad_normalized_feats = paddle.concat( + [ + normalized_feats, paddle.zeros( + (num_max_nodes - num_nodes, + normalized_feats.shape[1])) + ], + axis=0) + local_graph_labels = node_labels[pivot_local_graph] + knn_labels = local_graph_labels[knn_inds.numpy()] + link_labels = ((node_labels[pivot_ind] == knn_labels) & + (node_labels[pivot_ind] > 0)).astype(np.int64) + link_labels = paddle.to_tensor(link_labels) + + local_graphs_node_feat.append(pad_normalized_feats) + adjacent_matrices.append(pad_adjacent_matrix) + pivots_knn_inds.append(knn_inds) + pivots_gt_linkage.append(link_labels) + + local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0) + adjacent_matrices = paddle.stack(adjacent_matrices, 0) + pivots_knn_inds = paddle.stack(pivots_knn_inds, 0) + pivots_gt_linkage = paddle.stack(pivots_gt_linkage, 0) + + return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, + pivots_gt_linkage) + + def __call__(self, feat_maps, comp_attribs): + """Generate local graphs as GCN input. + + Args: + feat_maps (Tensor): The feature maps to extract the content + features of text components. + comp_attribs (ndarray): The text component attributes. + + Returns: + local_graphs_node_feat (Tensor): The node features of graph. + adjacent_matrices (Tensor): The adjacent matrices of local graphs. + pivots_knn_inds (Tensor): The k-nearest neighbor indices in local + graph. + gt_linkage (Tensor): The surpervision signal of GCN for linkage + prediction. + """ + + assert isinstance(feat_maps, paddle.Tensor) + assert comp_attribs.ndim == 3 + assert comp_attribs.shape[2] == 8 + + sorted_dist_inds_batch = [] + local_graph_batch = [] + knn_batch = [] + node_feat_batch = [] + node_label_batch = [] + + for batch_ind in range(comp_attribs.shape[0]): + num_comps = int(comp_attribs[batch_ind, 0, 0]) + comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7] + node_labels = comp_attribs[batch_ind, :num_comps, 7].astype( + np.int32) + + comp_centers = comp_geo_attribs[:, 0:2] + distance_matrix = euclidean_distance_matrix(comp_centers, + comp_centers) + + batch_id = np.zeros( + (comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind + comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1) + angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign( + comp_geo_attribs[:, -1]) + angle = angle.reshape((-1, 1)) + rotated_rois = np.hstack( + [batch_id, comp_geo_attribs[:, :-2], angle]) + rois = paddle.to_tensor(rotated_rois) + content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0), + rois) + + content_feats = content_feats.reshape([content_feats.shape[0], -1]) + geo_feats = feature_embedding(comp_geo_attribs, + self.node_geo_feat_dim) + geo_feats = paddle.to_tensor(geo_feats) + node_feats = paddle.concat([content_feats, geo_feats], axis=-1) + + sorted_dist_inds = np.argsort(distance_matrix, axis=1) + pivot_local_graphs, pivot_knns = self.generate_local_graphs( + sorted_dist_inds, node_labels) + + node_feat_batch.append(node_feats) + node_label_batch.append(node_labels) + local_graph_batch.append(pivot_local_graphs) + knn_batch.append(pivot_knns) + sorted_dist_inds_batch.append(sorted_dist_inds) + + (node_feats, adjacent_matrices, knn_inds, gt_linkage) = \ + self.generate_gcn_input(node_feat_batch, + node_label_batch, + local_graph_batch, + knn_batch, + sorted_dist_inds_batch) + + return node_feats, adjacent_matrices, knn_inds, gt_linkage diff --git a/ppocr/modeling/heads/proposal_local_graph.py b/ppocr/modeling/heads/proposal_local_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..7887c4ff42f8ae9d1826a71f01208cd81bb2d52c --- /dev/null +++ b/ppocr/modeling/heads/proposal_local_graph.py @@ -0,0 +1,412 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/proposal_local_graph.py +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import cv2 +import numpy as np +import paddle +import paddle.nn as nn +import paddle.nn.functional as F +from lanms import merge_quadrangle_n9 as la_nms + +from ppocr.ext_op import RoIAlignRotated +from .local_graph import (euclidean_distance_matrix, feature_embedding, + normalize_adjacent_matrix) + + +def fill_hole(input_mask): + h, w = input_mask.shape + canvas = np.zeros((h + 2, w + 2), np.uint8) + canvas[1:h + 1, 1:w + 1] = input_mask.copy() + + mask = np.zeros((h + 4, w + 4), np.uint8) + + cv2.floodFill(canvas, mask, (0, 0), 1) + canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool) + + return ~canvas | input_mask + + +class ProposalLocalGraphs: + def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len, + pooling_scale, pooling_output_size, nms_thr, min_width, + max_width, comp_shrink_ratio, comp_w_h_ratio, comp_score_thr, + text_region_thr, center_region_thr, center_region_area_thr): + + assert len(k_at_hops) == 2 + assert isinstance(k_at_hops, tuple) + assert isinstance(num_adjacent_linkages, int) + assert isinstance(node_geo_feat_len, int) + assert isinstance(pooling_scale, float) + assert isinstance(pooling_output_size, tuple) + assert isinstance(nms_thr, float) + assert isinstance(min_width, float) + assert isinstance(max_width, float) + assert isinstance(comp_shrink_ratio, float) + assert isinstance(comp_w_h_ratio, float) + assert isinstance(comp_score_thr, float) + assert isinstance(text_region_thr, float) + assert isinstance(center_region_thr, float) + assert isinstance(center_region_area_thr, int) + + self.k_at_hops = k_at_hops + self.active_connection = num_adjacent_linkages + self.local_graph_depth = len(self.k_at_hops) + self.node_geo_feat_dim = node_geo_feat_len + self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale) + self.nms_thr = nms_thr + self.min_width = min_width + self.max_width = max_width + self.comp_shrink_ratio = comp_shrink_ratio + self.comp_w_h_ratio = comp_w_h_ratio + self.comp_score_thr = comp_score_thr + self.text_region_thr = text_region_thr + self.center_region_thr = center_region_thr + self.center_region_area_thr = center_region_area_thr + + def propose_comps(self, score_map, top_height_map, bot_height_map, sin_map, + cos_map, comp_score_thr, min_width, max_width, + comp_shrink_ratio, comp_w_h_ratio): + """Propose text components. + + Args: + score_map (ndarray): The score map for NMS. + top_height_map (ndarray): The predicted text height map from each + pixel in text center region to top sideline. + bot_height_map (ndarray): The predicted text height map from each + pixel in text center region to bottom sideline. + sin_map (ndarray): The predicted sin(theta) map. + cos_map (ndarray): The predicted cos(theta) map. + comp_score_thr (float): The score threshold of text component. + min_width (float): The minimum width of text components. + max_width (float): The maximum width of text components. + comp_shrink_ratio (float): The shrink ratio of text components. + comp_w_h_ratio (float): The width to height ratio of text + components. + + Returns: + text_comps (ndarray): The text components. + """ + + comp_centers = np.argwhere(score_map > comp_score_thr) + comp_centers = comp_centers[np.argsort(comp_centers[:, 0])] + y = comp_centers[:, 0] + x = comp_centers[:, 1] + + top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio + bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio + sin = sin_map[y, x].reshape((-1, 1)) + cos = cos_map[y, x].reshape((-1, 1)) + + top_mid_pts = comp_centers + np.hstack( + [top_height * sin, top_height * cos]) + bot_mid_pts = comp_centers - np.hstack( + [bot_height * sin, bot_height * cos]) + + width = (top_height + bot_height) * comp_w_h_ratio + width = np.clip(width, min_width, max_width) + r = width / 2 + + tl = top_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos]) + tr = top_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos]) + br = bot_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos]) + bl = bot_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos]) + text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32) + + score = score_map[y, x].reshape((-1, 1)) + text_comps = np.hstack([text_comps, score]) + + return text_comps + + def propose_comps_and_attribs(self, text_region_map, center_region_map, + top_height_map, bot_height_map, sin_map, + cos_map): + """Generate text components and attributes. + + Args: + text_region_map (ndarray): The predicted text region probability + map. + center_region_map (ndarray): The predicted text center region + probability map. + top_height_map (ndarray): The predicted text height map from each + pixel in text center region to top sideline. + bot_height_map (ndarray): The predicted text height map from each + pixel in text center region to bottom sideline. + sin_map (ndarray): The predicted sin(theta) map. + cos_map (ndarray): The predicted cos(theta) map. + + Returns: + comp_attribs (ndarray): The text component attributes. + text_comps (ndarray): The text components. + """ + + assert (text_region_map.shape == center_region_map.shape == + top_height_map.shape == bot_height_map.shape == sin_map.shape == + cos_map.shape) + text_mask = text_region_map > self.text_region_thr + center_region_mask = ( + center_region_map > self.center_region_thr) * text_mask + + scale = np.sqrt(1.0 / (sin_map**2 + cos_map**2 + 1e-8)) + sin_map, cos_map = sin_map * scale, cos_map * scale + + center_region_mask = fill_hole(center_region_mask) + center_region_contours, _ = cv2.findContours( + center_region_mask.astype(np.uint8), cv2.RETR_TREE, + cv2.CHAIN_APPROX_SIMPLE) + + mask_sz = center_region_map.shape + comp_list = [] + for contour in center_region_contours: + current_center_mask = np.zeros(mask_sz) + cv2.drawContours(current_center_mask, [contour], -1, 1, -1) + if current_center_mask.sum() <= self.center_region_area_thr: + continue + score_map = text_region_map * current_center_mask + + text_comps = self.propose_comps( + score_map, top_height_map, bot_height_map, sin_map, cos_map, + self.comp_score_thr, self.min_width, self.max_width, + self.comp_shrink_ratio, self.comp_w_h_ratio) + + text_comps = la_nms(text_comps, self.nms_thr) + text_comp_mask = np.zeros(mask_sz) + text_comp_boxes = text_comps[:, :8].reshape( + (-1, 4, 2)).astype(np.int32) + + cv2.drawContours(text_comp_mask, text_comp_boxes, -1, 1, -1) + if (text_comp_mask * text_mask).sum() < text_comp_mask.sum() * 0.5: + continue + if text_comps.shape[-1] > 0: + comp_list.append(text_comps) + + if len(comp_list) <= 0: + return None, None + + text_comps = np.vstack(comp_list) + text_comp_boxes = text_comps[:, :8].reshape((-1, 4, 2)) + centers = np.mean(text_comp_boxes, axis=1).astype(np.int32) + x = centers[:, 0] + y = centers[:, 1] + + scores = [] + for text_comp_box in text_comp_boxes: + text_comp_box[:, 0] = np.clip(text_comp_box[:, 0], 0, + mask_sz[1] - 1) + text_comp_box[:, 1] = np.clip(text_comp_box[:, 1], 0, + mask_sz[0] - 1) + min_coord = np.min(text_comp_box, axis=0).astype(np.int32) + max_coord = np.max(text_comp_box, axis=0).astype(np.int32) + text_comp_box = text_comp_box - min_coord + box_sz = (max_coord - min_coord + 1) + temp_comp_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8) + cv2.fillPoly(temp_comp_mask, [text_comp_box.astype(np.int32)], 1) + temp_region_patch = text_region_map[min_coord[1]:(max_coord[1] + 1), + min_coord[0]:(max_coord[0] + 1)] + score = cv2.mean(temp_region_patch, temp_comp_mask)[0] + scores.append(score) + scores = np.array(scores).reshape((-1, 1)) + text_comps = np.hstack([text_comps[:, :-1], scores]) + + h = top_height_map[y, x].reshape( + (-1, 1)) + bot_height_map[y, x].reshape((-1, 1)) + w = np.clip(h * self.comp_w_h_ratio, self.min_width, self.max_width) + sin = sin_map[y, x].reshape((-1, 1)) + cos = cos_map[y, x].reshape((-1, 1)) + + x = x.reshape((-1, 1)) + y = y.reshape((-1, 1)) + comp_attribs = np.hstack([x, y, h, w, cos, sin]) + + return comp_attribs, text_comps + + def generate_local_graphs(self, sorted_dist_inds, node_feats): + """Generate local graphs and graph convolution network input data. + + Args: + sorted_dist_inds (ndarray): The node indices sorted according to + the Euclidean distance. + node_feats (tensor): The features of nodes in graph. + + Returns: + local_graphs_node_feats (tensor): The features of nodes in local + graphs. + adjacent_matrices (tensor): The adjacent matrices. + pivots_knn_inds (tensor): The k-nearest neighbor indices in + local graphs. + pivots_local_graphs (tensor): The indices of nodes in local + graphs. + """ + + assert sorted_dist_inds.ndim == 2 + assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] == + node_feats.shape[0]) + + knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1] + pivot_local_graphs = [] + pivot_knns = [] + + for pivot_ind, knn in enumerate(knn_graph): + + local_graph_neighbors = set(knn) + + for neighbor_ind in knn: + local_graph_neighbors.update( + set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] + + 1])) + + local_graph_neighbors.discard(pivot_ind) + pivot_local_graph = list(local_graph_neighbors) + pivot_local_graph.insert(0, pivot_ind) + pivot_knn = [pivot_ind] + list(knn) + + pivot_local_graphs.append(pivot_local_graph) + pivot_knns.append(pivot_knn) + + num_max_nodes = max([ + len(pivot_local_graph) for pivot_local_graph in pivot_local_graphs + ]) + + local_graphs_node_feat = [] + adjacent_matrices = [] + pivots_knn_inds = [] + pivots_local_graphs = [] + + for graph_ind, pivot_knn in enumerate(pivot_knns): + pivot_local_graph = pivot_local_graphs[graph_ind] + num_nodes = len(pivot_local_graph) + pivot_ind = pivot_local_graph[0] + node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)} + + knn_inds = paddle.cast( + paddle.to_tensor([node2ind_map[i] + for i in pivot_knn[1:]]), 'int64') + pivot_feats = node_feats[pivot_ind] + normalized_feats = node_feats[paddle.to_tensor( + pivot_local_graph)] - pivot_feats + + adjacent_matrix = np.zeros((num_nodes, num_nodes), dtype=np.float32) + for node in pivot_local_graph: + neighbors = sorted_dist_inds[node, 1:self.active_connection + 1] + for neighbor in neighbors: + if neighbor in pivot_local_graph: + adjacent_matrix[node2ind_map[node], node2ind_map[ + neighbor]] = 1 + adjacent_matrix[node2ind_map[neighbor], node2ind_map[ + node]] = 1 + + adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix) + pad_adjacent_matrix = paddle.zeros((num_max_nodes, num_max_nodes), ) + pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast( + paddle.to_tensor(adjacent_matrix), 'float32') + + pad_normalized_feats = paddle.concat( + [ + normalized_feats, paddle.zeros( + (num_max_nodes - num_nodes, normalized_feats.shape[1]), + ) + ], + axis=0) + + local_graph_nodes = paddle.to_tensor(pivot_local_graph) + local_graph_nodes = paddle.concat( + [ + local_graph_nodes, paddle.zeros( + [num_max_nodes - num_nodes], dtype='int64') + ], + axis=-1) + + local_graphs_node_feat.append(pad_normalized_feats) + adjacent_matrices.append(pad_adjacent_matrix) + pivots_knn_inds.append(knn_inds) + pivots_local_graphs.append(local_graph_nodes) + + local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0) + adjacent_matrices = paddle.stack(adjacent_matrices, 0) + pivots_knn_inds = paddle.stack(pivots_knn_inds, 0) + pivots_local_graphs = paddle.stack(pivots_local_graphs, 0) + + return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, + pivots_local_graphs) + + def __call__(self, preds, feat_maps): + """Generate local graphs and graph convolutional network input data. + + Args: + preds (tensor): The predicted maps. + feat_maps (tensor): The feature maps to extract content feature of + text components. + + Returns: + none_flag (bool): The flag showing whether the number of proposed + text components is 0. + local_graphs_node_feats (tensor): The features of nodes in local + graphs. + adjacent_matrices (tensor): The adjacent matrices. + pivots_knn_inds (tensor): The k-nearest neighbor indices in + local graphs. + pivots_local_graphs (tensor): The indices of nodes in local + graphs. + text_comps (ndarray): The predicted text components. + """ + if preds.ndim == 4: + assert preds.shape[0] == 1 + preds = paddle.squeeze(preds) + pred_text_region = F.sigmoid(preds[0]).numpy() + pred_center_region = F.sigmoid(preds[1]).numpy() + pred_sin_map = preds[2].numpy() + pred_cos_map = preds[3].numpy() + pred_top_height_map = preds[4].numpy() + pred_bot_height_map = preds[5].numpy() + + comp_attribs, text_comps = self.propose_comps_and_attribs( + pred_text_region, pred_center_region, pred_top_height_map, + pred_bot_height_map, pred_sin_map, pred_cos_map) + + if comp_attribs is None or len(comp_attribs) < 2: + none_flag = True + return none_flag, (0, 0, 0, 0, 0) + + comp_centers = comp_attribs[:, 0:2] + distance_matrix = euclidean_distance_matrix(comp_centers, comp_centers) + + geo_feats = feature_embedding(comp_attribs, self.node_geo_feat_dim) + geo_feats = paddle.to_tensor(geo_feats) + + batch_id = np.zeros((comp_attribs.shape[0], 1), dtype=np.float32) + comp_attribs = comp_attribs.astype(np.float32) + angle = np.arccos(comp_attribs[:, -2]) * np.sign(comp_attribs[:, -1]) + angle = angle.reshape((-1, 1)) + rotated_rois = np.hstack([batch_id, comp_attribs[:, :-2], angle]) + rois = paddle.to_tensor(rotated_rois) + + content_feats = self.pooling(feat_maps, rois) + content_feats = content_feats.reshape([content_feats.shape[0], -1]) + node_feats = paddle.concat([content_feats, geo_feats], axis=-1) + + sorted_dist_inds = np.argsort(distance_matrix, axis=1) + (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, + pivots_local_graphs) = self.generate_local_graphs(sorted_dist_inds, + node_feats) + + none_flag = False + return none_flag, (local_graphs_node_feat, adjacent_matrices, + pivots_knn_inds, pivots_local_graphs, text_comps) diff --git a/ppocr/modeling/necks/__init__.py b/ppocr/modeling/necks/__init__.py index a94d223a1e67999cbd4363d83771d141a33c668d..f5e89a5b80f665d77833ffedaa2c141a3022f25d 100644 --- a/ppocr/modeling/necks/__init__.py +++ b/ppocr/modeling/necks/__init__.py @@ -27,11 +27,12 @@ def build_neck(config): from .pren_fpn import PRENFPN from .csp_pan import CSPPAN from .ct_fpn import CTFPN + from .fpn_unet import FPN_UNet from .rf_adaptor import RFAdaptor support_dict = [ 'FPN', 'FCEFPN', 'LKPAN', 'DBFPN', 'RSEFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN', 'CSPPAN', 'CTFPN', - 'RFAdaptor' + 'RFAdaptor', 'FPN_UNet' ] module_name = config.pop('name') diff --git a/ppocr/modeling/necks/fpn_unet.py b/ppocr/modeling/necks/fpn_unet.py new file mode 100644 index 0000000000000000000000000000000000000000..34e94a8b50532cfbbfea1cecdba6cfb0d5a239cd --- /dev/null +++ b/ppocr/modeling/necks/fpn_unet.py @@ -0,0 +1,97 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py +""" + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + + +class UpBlock(nn.Layer): + def __init__(self, in_channels, out_channels): + super().__init__() + + assert isinstance(in_channels, int) + assert isinstance(out_channels, int) + + self.conv1x1 = nn.Conv2D( + in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.conv3x3 = nn.Conv2D( + in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.deconv = nn.Conv2DTranspose( + out_channels, out_channels, kernel_size=4, stride=2, padding=1) + + def forward(self, x): + x = F.relu(self.conv1x1(x)) + x = F.relu(self.conv3x3(x)) + x = self.deconv(x) + return x + + +class FPN_UNet(nn.Layer): + def __init__(self, in_channels, out_channels): + super().__init__() + + assert len(in_channels) == 4 + assert isinstance(out_channels, int) + self.out_channels = out_channels + + blocks_out_channels = [out_channels] + [ + min(out_channels * 2**i, 256) for i in range(4) + ] + blocks_in_channels = [blocks_out_channels[1]] + [ + in_channels[i] + blocks_out_channels[i + 2] for i in range(3) + ] + [in_channels[3]] + + self.up4 = nn.Conv2DTranspose( + blocks_in_channels[4], + blocks_out_channels[4], + kernel_size=4, + stride=2, + padding=1) + self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3]) + self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2]) + self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1]) + self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0]) + + def forward(self, x): + """ + Args: + x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape + :math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5 + features respectively. :math:`C_i` should matches the number in + ``in_channels``. + + Returns: + Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and + :math:`W=4W_0`. + """ + c2, c3, c4, c5 = x + + x = F.relu(self.up4(c5)) + + x = paddle.concat([x, c4], axis=1) + x = F.relu(self.up_block3(x)) + + x = paddle.concat([x, c3], axis=1) + x = F.relu(self.up_block2(x)) + + x = paddle.concat([x, c2], axis=1) + x = F.relu(self.up_block1(x)) + + x = self.up_block0(x) + return x diff --git a/ppocr/postprocess/__init__.py b/ppocr/postprocess/__init__.py index b5715967b01aefb13e8b1cc9654924483376b72b..3a09030b25461029d9160699dc591eaedab9e0db 100644 --- a/ppocr/postprocess/__init__.py +++ b/ppocr/postprocess/__init__.py @@ -36,6 +36,7 @@ from .vqa_token_re_layoutlm_postprocess import VQAReTokenLayoutLMPostProcess, Di from .table_postprocess import TableMasterLabelDecode, TableLabelDecode from .picodet_postprocess import PicoDetPostProcess from .ct_postprocess import CTPostProcess +from .drrg_postprocess import DRRGPostprocess def build_post_process(config, global_config=None): @@ -49,7 +50,8 @@ def build_post_process(config, global_config=None): 'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode', 'TableMasterLabelDecode', 'SPINLabelDecode', 'DistillationSerPostProcess', 'DistillationRePostProcess', - 'VLLabelDecode', 'PicoDetPostProcess', 'CTPostProcess', 'RFLLabelDecode' + 'VLLabelDecode', 'PicoDetPostProcess', 'CTPostProcess', + 'RFLLabelDecode', 'DRRGPostprocess' ] if config['name'] == 'PSEPostProcess': diff --git a/ppocr/postprocess/drrg_postprocess.py b/ppocr/postprocess/drrg_postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..353081c9d4d0fa1d04d995c84445445767276cc8 --- /dev/null +++ b/ppocr/postprocess/drrg_postprocess.py @@ -0,0 +1,326 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/postprocess/drrg_postprocessor.py +""" + +import functools +import operator + +import numpy as np +import paddle +from numpy.linalg import norm +import cv2 + + +class Node: + def __init__(self, ind): + self.__ind = ind + self.__links = set() + + @property + def ind(self): + return self.__ind + + @property + def links(self): + return set(self.__links) + + def add_link(self, link_node): + self.__links.add(link_node) + link_node.__links.add(self) + + +def graph_propagation(edges, scores, text_comps, edge_len_thr=50.): + assert edges.ndim == 2 + assert edges.shape[1] == 2 + assert edges.shape[0] == scores.shape[0] + assert text_comps.ndim == 2 + assert isinstance(edge_len_thr, float) + + edges = np.sort(edges, axis=1) + score_dict = {} + for i, edge in enumerate(edges): + if text_comps is not None: + box1 = text_comps[edge[0], :8].reshape(4, 2) + box2 = text_comps[edge[1], :8].reshape(4, 2) + center1 = np.mean(box1, axis=0) + center2 = np.mean(box2, axis=0) + distance = norm(center1 - center2) + if distance > edge_len_thr: + scores[i] = 0 + if (edge[0], edge[1]) in score_dict: + score_dict[edge[0], edge[1]] = 0.5 * ( + score_dict[edge[0], edge[1]] + scores[i]) + else: + score_dict[edge[0], edge[1]] = scores[i] + + nodes = np.sort(np.unique(edges.flatten())) + mapping = -1 * np.ones((np.max(nodes) + 1), dtype=np.int) + mapping[nodes] = np.arange(nodes.shape[0]) + order_inds = mapping[edges] + vertices = [Node(node) for node in nodes] + for ind in order_inds: + vertices[ind[0]].add_link(vertices[ind[1]]) + + return vertices, score_dict + + +def connected_components(nodes, score_dict, link_thr): + assert isinstance(nodes, list) + assert all([isinstance(node, Node) for node in nodes]) + assert isinstance(score_dict, dict) + assert isinstance(link_thr, float) + + clusters = [] + nodes = set(nodes) + while nodes: + node = nodes.pop() + cluster = {node} + node_queue = [node] + while node_queue: + node = node_queue.pop(0) + neighbors = set([ + neighbor for neighbor in node.links + if score_dict[tuple(sorted([node.ind, neighbor.ind]))] >= + link_thr + ]) + neighbors.difference_update(cluster) + nodes.difference_update(neighbors) + cluster.update(neighbors) + node_queue.extend(neighbors) + clusters.append(list(cluster)) + return clusters + + +def clusters2labels(clusters, num_nodes): + assert isinstance(clusters, list) + assert all([isinstance(cluster, list) for cluster in clusters]) + assert all( + [isinstance(node, Node) for cluster in clusters for node in cluster]) + assert isinstance(num_nodes, int) + + node_labels = np.zeros(num_nodes) + for cluster_ind, cluster in enumerate(clusters): + for node in cluster: + node_labels[node.ind] = cluster_ind + return node_labels + + +def remove_single(text_comps, comp_pred_labels): + assert text_comps.ndim == 2 + assert text_comps.shape[0] == comp_pred_labels.shape[0] + + single_flags = np.zeros_like(comp_pred_labels) + pred_labels = np.unique(comp_pred_labels) + for label in pred_labels: + current_label_flag = (comp_pred_labels == label) + if np.sum(current_label_flag) == 1: + single_flags[np.where(current_label_flag)[0][0]] = 1 + keep_ind = [i for i in range(len(comp_pred_labels)) if not single_flags[i]] + filtered_text_comps = text_comps[keep_ind, :] + filtered_labels = comp_pred_labels[keep_ind] + + return filtered_text_comps, filtered_labels + + +def norm2(point1, point2): + return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)**0.5 + + +def min_connect_path(points): + assert isinstance(points, list) + assert all([isinstance(point, list) for point in points]) + assert all([isinstance(coord, int) for point in points for coord in point]) + + points_queue = points.copy() + shortest_path = [] + current_edge = [[], []] + + edge_dict0 = {} + edge_dict1 = {} + current_edge[0] = points_queue[0] + current_edge[1] = points_queue[0] + points_queue.remove(points_queue[0]) + while points_queue: + for point in points_queue: + length0 = norm2(point, current_edge[0]) + edge_dict0[length0] = [point, current_edge[0]] + length1 = norm2(current_edge[1], point) + edge_dict1[length1] = [current_edge[1], point] + key0 = min(edge_dict0.keys()) + key1 = min(edge_dict1.keys()) + + if key0 <= key1: + start = edge_dict0[key0][0] + end = edge_dict0[key0][1] + shortest_path.insert(0, [points.index(start), points.index(end)]) + points_queue.remove(start) + current_edge[0] = start + else: + start = edge_dict1[key1][0] + end = edge_dict1[key1][1] + shortest_path.append([points.index(start), points.index(end)]) + points_queue.remove(end) + current_edge[1] = end + + edge_dict0 = {} + edge_dict1 = {} + + shortest_path = functools.reduce(operator.concat, shortest_path) + shortest_path = sorted(set(shortest_path), key=shortest_path.index) + + return shortest_path + + +def in_contour(cont, point): + x, y = point + is_inner = cv2.pointPolygonTest(cont, (int(x), int(y)), False) > 0.5 + return is_inner + + +def fix_corner(top_line, bot_line, start_box, end_box): + assert isinstance(top_line, list) + assert all(isinstance(point, list) for point in top_line) + assert isinstance(bot_line, list) + assert all(isinstance(point, list) for point in bot_line) + assert start_box.shape == end_box.shape == (4, 2) + + contour = np.array(top_line + bot_line[::-1]) + start_left_mid = (start_box[0] + start_box[3]) / 2 + start_right_mid = (start_box[1] + start_box[2]) / 2 + end_left_mid = (end_box[0] + end_box[3]) / 2 + end_right_mid = (end_box[1] + end_box[2]) / 2 + if not in_contour(contour, start_left_mid): + top_line.insert(0, start_box[0].tolist()) + bot_line.insert(0, start_box[3].tolist()) + elif not in_contour(contour, start_right_mid): + top_line.insert(0, start_box[1].tolist()) + bot_line.insert(0, start_box[2].tolist()) + if not in_contour(contour, end_left_mid): + top_line.append(end_box[0].tolist()) + bot_line.append(end_box[3].tolist()) + elif not in_contour(contour, end_right_mid): + top_line.append(end_box[1].tolist()) + bot_line.append(end_box[2].tolist()) + return top_line, bot_line + + +def comps2boundaries(text_comps, comp_pred_labels): + assert text_comps.ndim == 2 + assert len(text_comps) == len(comp_pred_labels) + boundaries = [] + if len(text_comps) < 1: + return boundaries + for cluster_ind in range(0, int(np.max(comp_pred_labels)) + 1): + cluster_comp_inds = np.where(comp_pred_labels == cluster_ind) + text_comp_boxes = text_comps[cluster_comp_inds, :8].reshape( + (-1, 4, 2)).astype(np.int32) + score = np.mean(text_comps[cluster_comp_inds, -1]) + + if text_comp_boxes.shape[0] < 1: + continue + + elif text_comp_boxes.shape[0] > 1: + centers = np.mean(text_comp_boxes, axis=1).astype(np.int32).tolist() + shortest_path = min_connect_path(centers) + text_comp_boxes = text_comp_boxes[shortest_path] + top_line = np.mean( + text_comp_boxes[:, 0:2, :], axis=1).astype(np.int32).tolist() + bot_line = np.mean( + text_comp_boxes[:, 2:4, :], axis=1).astype(np.int32).tolist() + top_line, bot_line = fix_corner( + top_line, bot_line, text_comp_boxes[0], text_comp_boxes[-1]) + boundary_points = top_line + bot_line[::-1] + + else: + top_line = text_comp_boxes[0, 0:2, :].astype(np.int32).tolist() + bot_line = text_comp_boxes[0, 2:4:-1, :].astype(np.int32).tolist() + boundary_points = top_line + bot_line + + boundary = [p for coord in boundary_points for p in coord] + [score] + boundaries.append(boundary) + + return boundaries + + +class DRRGPostprocess(object): + """Merge text components and construct boundaries of text instances. + + Args: + link_thr (float): The edge score threshold. + """ + + def __init__(self, link_thr, **kwargs): + assert isinstance(link_thr, float) + self.link_thr = link_thr + + def __call__(self, preds, shape_list): + """ + Args: + edges (ndarray): The edge array of shape N * 2, each row is a node + index pair that makes up an edge in graph. + scores (ndarray): The edge score array of shape (N,). + text_comps (ndarray): The text components. + + Returns: + List[list[float]]: The predicted boundaries of text instances. + """ + edges, scores, text_comps = preds + if edges is not None: + if isinstance(edges, paddle.Tensor): + edges = edges.numpy() + if isinstance(scores, paddle.Tensor): + scores = scores.numpy() + if isinstance(text_comps, paddle.Tensor): + text_comps = text_comps.numpy() + assert len(edges) == len(scores) + assert text_comps.ndim == 2 + assert text_comps.shape[1] == 9 + + vertices, score_dict = graph_propagation(edges, scores, text_comps) + clusters = connected_components(vertices, score_dict, self.link_thr) + pred_labels = clusters2labels(clusters, text_comps.shape[0]) + text_comps, pred_labels = remove_single(text_comps, pred_labels) + boundaries = comps2boundaries(text_comps, pred_labels) + else: + boundaries = [] + + boundaries, scores = self.resize_boundary( + boundaries, (1 / shape_list[0, 2:]).tolist()[::-1]) + boxes_batch = [dict(points=boundaries, scores=scores)] + return boxes_batch + + def resize_boundary(self, boundaries, scale_factor): + """Rescale boundaries via scale_factor. + + Args: + boundaries (list[list[float]]): The boundary list. Each boundary + with size 2k+1 with k>=4. + scale_factor(ndarray): The scale factor of size (4,). + + Returns: + boundaries (list[list[float]]): The scaled boundaries. + """ + boxes = [] + scores = [] + for b in boundaries: + sz = len(b) + scores.append(b[-1]) + b = (np.array(b[:sz - 1]) * + (np.tile(scale_factor[:2], int( + (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist() + boxes.append(np.array(b).reshape([-1, 2])) + return boxes, scores diff --git a/requirements.txt b/requirements.txt index 7a018b50952a876b4839eabbd72fac09d2bbd73b..d795e06f0f76ee7ae009772ae8ff2bdbc321a16a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -15,4 +15,5 @@ premailer openpyxl attrdict Polygon3 +lanms-neo==1.0.2 PyMuPDF==1.18.7 diff --git a/tools/program.py b/tools/program.py index 8fcf68866d0a7a4ec4848d3b61bf4519130d7cdd..5d2bd5bfb034940e3bec802b5e7041c8e82a9271 100755 --- a/tools/program.py +++ b/tools/program.py @@ -220,7 +220,7 @@ def train(config, use_srn = config['Architecture']['algorithm'] == "SRN" extra_input_models = [ "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", - "RobustScanner", "RFL" + "RobustScanner", "RFL", 'DRRG' ] extra_input = False if config['Architecture']['algorithm'] == 'Distillation': @@ -629,7 +629,7 @@ def preprocess(is_train=False): 'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE', 'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE', 'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN', - 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL' + 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG' ] if use_xpu: