未验证 提交 1757d834 编写于 作者: W Wei-JL 提交者: GitHub

Merge branch 'PaddlePaddle:dygraph' into dygraph

...@@ -101,7 +101,7 @@ def main(): ...@@ -101,7 +101,7 @@ def main():
quanter = QAT(config=quant_config) quanter = QAT(config=quant_config)
quanter.quantize(model) quanter.quantize(model)
init_model(config, model, logger) init_model(config, model)
model.eval() model.eval()
# build metric # build metric
......
...@@ -17,7 +17,7 @@ distill_train:null ...@@ -17,7 +17,7 @@ distill_train:null
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.checkpoints: Global.pretrained_model:
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py fpgm_export:deploy/slim/prune/export_prune_model.py
......
...@@ -101,7 +101,7 @@ function func_inference(){ ...@@ -101,7 +101,7 @@ function func_inference(){
for use_mkldnn in ${use_mkldnn_list[*]}; do for use_mkldnn in ${use_mkldnn_list[*]}; do
for threads in ${cpu_threads_list[*]}; do for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}" _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command eval $command
status_check $? "${command}" "${status_log}" status_check $? "${command}" "${status_log}"
...@@ -115,7 +115,7 @@ function func_inference(){ ...@@ -115,7 +115,7 @@ function func_inference(){
continue continue
fi fi
for batch_size in ${batch_size_list[*]}; do for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}" _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command eval $command
status_check $? "${command}" "${status_log}" status_check $? "${command}" "${status_log}"
...@@ -136,6 +136,7 @@ for gpu in ${gpu_list[*]}; do ...@@ -136,6 +136,7 @@ for gpu in ${gpu_list[*]}; do
env="" env=""
elif [ ${#gpu} -le 1 ];then elif [ ${#gpu} -le 1 ];then
env="export CUDA_VISIBLE_DEVICES=${gpu}" env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then elif [ ${#gpu} -le 15 ];then
IFS="," IFS=","
array=(${gpu}) array=(${gpu})
...@@ -215,9 +216,10 @@ for gpu in ${gpu_list[*]}; do ...@@ -215,9 +216,10 @@ for gpu in ${gpu_list[*]}; do
status_check $? "${export_cmd}" "${status_log}" status_check $? "${export_cmd}" "${status_log}"
#run inference #run inference
echo $env eval $env
save_infer_path="${save_log}" save_infer_path="${save_log}"
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
eval "unset CUDA_VISIBLE_DEVICES"
done done
done done
done done
......
...@@ -19,7 +19,29 @@ ...@@ -19,7 +19,29 @@
### 2.1 训练 ### 2.1 训练
TBD #### 数据准备
训练数据使用公开数据集[PubTabNet](https://arxiv.org/abs/1911.10683),可以从[官网](https://github.com/ibm-aur-nlp/PubTabNet)下载。PubTabNet数据集包含约50万张表格数据的图像,以及图像对应的html格式的注释。
#### 启动训练
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```shell
# 单机单卡训练
python3 tools/train.py -c configs/table/table_mv3.yml
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/table_mv3.yml
```
上述指令中,通过-c 选择训练使用configs/table/table_mv3.yml配置文件。有关配置文件的详细解释,请参考[链接](./config.md)
#### 断点训练
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
```shell
python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model
```
**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
### 2.2 评估 ### 2.2 评估
先cd到PaddleOCR/ppstructure目录下 先cd到PaddleOCR/ppstructure目录下
......
...@@ -164,7 +164,7 @@ def create_predictor(args, mode, logger): ...@@ -164,7 +164,7 @@ def create_predictor(args, mode, logger):
config.enable_use_gpu(args.gpu_mem, 0) config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt: if args.use_tensorrt:
config.enable_tensorrt_engine( config.enable_tensorrt_engine(
precision_mode=inference.PrecisionType.Float32, precision_mode=precision,
max_batch_size=args.max_batch_size, max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size) min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph # skip the minmum trt subgraph
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册