diff --git a/deploy/slim/quantization/export_model.py b/deploy/slim/quantization/export_model.py index 87d2f333c1923b088d32e5fb420ae7a5021d6b08..d94e53034a2bf67b364e6d91f83acfb9e5445b8a 100755 --- a/deploy/slim/quantization/export_model.py +++ b/deploy/slim/quantization/export_model.py @@ -101,7 +101,7 @@ def main(): quanter = QAT(config=quant_config) quanter.quantize(model) - init_model(config, model, logger) + init_model(config, model) model.eval() # build metric diff --git a/test/ocr_det_params.txt b/test/ocr_det_params.txt index da7e034bdd1ef1f593020d2dd5e809b472651b54..bdfd4d4f47431bca97437963e1dc56d1b57838bb 100644 --- a/test/ocr_det_params.txt +++ b/test/ocr_det_params.txt @@ -17,7 +17,7 @@ distill_train:null eval:tools/eval.py -c configs/det/det_mv3_db.yml -o Global.save_inference_dir:./output/ -Global.checkpoints: +Global.pretrained_model: norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o fpgm_export:deploy/slim/prune/export_prune_model.py diff --git a/test/test.sh b/test/test.sh index a75aed426988755e395f27520fc76de10b4676d1..f2ac3f8b29af1be08e8eb5b836133dc53ad3d5b2 100644 --- a/test/test.sh +++ b/test/test.sh @@ -101,7 +101,7 @@ function func_inference(){ for use_mkldnn in ${use_mkldnn_list[*]}; do for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}" + _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" eval $command status_check $? "${command}" "${status_log}" @@ -115,7 +115,7 @@ function func_inference(){ continue fi for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}" + _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" eval $command status_check $? "${command}" "${status_log}" @@ -136,6 +136,7 @@ for gpu in ${gpu_list[*]}; do env="" elif [ ${#gpu} -le 1 ];then env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} elif [ ${#gpu} -le 15 ];then IFS="," array=(${gpu}) @@ -215,9 +216,10 @@ for gpu in ${gpu_list[*]}; do status_check $? "${export_cmd}" "${status_log}" #run inference - echo $env + eval $env save_infer_path="${save_log}" func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" + eval "unset CUDA_VISIBLE_DEVICES" done done done diff --git a/test1/table/README_ch.md b/test1/table/README_ch.md index 03f002f98b3f37a251638d1b1e11812ef703f5fc..5c3c9a285f6452e763b499695f5d8d875f21cd44 100644 --- a/test1/table/README_ch.md +++ b/test1/table/README_ch.md @@ -19,7 +19,29 @@ ### 2.1 训练 -TBD +#### 数据准备 +训练数据使用公开数据集[PubTabNet](https://arxiv.org/abs/1911.10683),可以从[官网](https://github.com/ibm-aur-nlp/PubTabNet)下载。PubTabNet数据集包含约50万张表格数据的图像,以及图像对应的html格式的注释。 + +#### 启动训练 +*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false* +```shell +# 单机单卡训练 +python3 tools/train.py -c configs/table/table_mv3.yml +# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID +python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/table_mv3.yml +``` + +上述指令中,通过-c 选择训练使用configs/table/table_mv3.yml配置文件。有关配置文件的详细解释,请参考[链接](./config.md)。 + +#### 断点训练 + +如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径: +```shell +python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model +``` + +**注意**:`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。 + ### 2.2 评估 先cd到PaddleOCR/ppstructure目录下 diff --git a/tools/infer/utility.py b/tools/infer/utility.py index e464722f094faa7b4296889f1b1b94c206f929b3..bf05a0dbaf56b6ccee3b8d3941c3890bca104832 100755 --- a/tools/infer/utility.py +++ b/tools/infer/utility.py @@ -164,7 +164,7 @@ def create_predictor(args, mode, logger): config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( - precision_mode=inference.PrecisionType.Float32, + precision_mode=precision, max_batch_size=args.max_batch_size, min_subgraph_size=args.min_subgraph_size) # skip the minmum trt subgraph