kie_sdmgr_head.py 7.4 KB
Newer Older
L
fix  
LDOUBLEV 已提交
1
# reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/heads/sdmgr_head.py
L
add kie  
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class SDMGRHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 num_chars=92,
                 visual_dim=16,
                 fusion_dim=1024,
                 node_input=32,
                 node_embed=256,
                 edge_input=5,
                 edge_embed=256,
                 num_gnn=2,
                 num_classes=26,
                 bidirectional=False):
        super().__init__()

        self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
        self.node_embed = nn.Embedding(num_chars, node_input, 0)
        hidden = node_embed // 2 if bidirectional else node_embed
        self.rnn = nn.LSTM(
            input_size=node_input, hidden_size=hidden, num_layers=1)
        self.edge_embed = nn.Linear(edge_input, edge_embed)
        self.gnn_layers = nn.LayerList(
            [GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
        self.node_cls = nn.Linear(node_embed, num_classes)
        self.edge_cls = nn.Linear(edge_embed, 2)

L
LDOUBLEV 已提交
40
    def forward(self, input, targets):
L
add kie  
LDOUBLEV 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        relations, texts, x = input
        node_nums, char_nums = [], []
        for text in texts:
            node_nums.append(text.shape[0])
            char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))

        max_num = max([char_num.max() for char_num in char_nums])
        all_nodes = paddle.concat([
            paddle.concat(
                [text, paddle.zeros(
                    (text.shape[0], max_num - text.shape[1]))], -1)
            for text in texts
        ])
        temp = paddle.clip(all_nodes, min=0).astype(int)
        embed_nodes = self.node_embed(temp)
        rnn_nodes, _ = self.rnn(embed_nodes)

        b, h, w = rnn_nodes.shape
        nodes = paddle.zeros([b, w])
        all_nums = paddle.concat(char_nums)
        valid = paddle.nonzero((all_nums > 0).astype(int))
        temp_all_nums = (
            paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
        temp_all_nums = paddle.expand(temp_all_nums, [
            temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
        ])
        temp_all_nodes = paddle.gather(rnn_nodes, valid)
        N, C, A = temp_all_nodes.shape
        one_hot = F.one_hot(
            temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
        one_hot = paddle.multiply(
            temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
        t = one_hot.expand([N, 1, A]).squeeze(1)
        nodes = paddle.scatter(nodes, valid.squeeze(1), t)

        if x is not None:
            nodes = self.fusion([x, nodes])

        all_edges = paddle.concat(
            [rel.reshape([-1, rel.shape[-1]]) for rel in relations])
        embed_edges = self.edge_embed(all_edges.astype('float32'))
        embed_edges = F.normalize(embed_edges)

        for gnn_layer in self.gnn_layers:
            nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)

        node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
        return node_cls, edge_cls


class GNNLayer(nn.Layer):
    def __init__(self, node_dim=256, edge_dim=256):
        super().__init__()
        self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
        self.coef_fc = nn.Linear(node_dim, 1)
        self.out_fc = nn.Linear(node_dim, node_dim)
        self.relu = nn.ReLU()

    def forward(self, nodes, edges, nums):
        start, cat_nodes = 0, []
        for num in nums:
            sample_nodes = nodes[start:start + num]
            cat_nodes.append(
                paddle.concat([
                    paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
                    paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
                ], -1).reshape([num**2, -1]))
            start += num
        cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
        cat_nodes = self.relu(self.in_fc(cat_nodes))
        coefs = self.coef_fc(cat_nodes)

        start, residuals = 0, []
        for num in nums:
            residual = F.softmax(
                -paddle.eye(num).unsqueeze(-1) * 1e9 +
                coefs[start:start + num**2].reshape([num, num, -1]), 1)
            residuals.append((residual * cat_nodes[start:start + num**2]
                              .reshape([num, num, -1])).sum(1))
            start += num**2

        nodes += self.relu(self.out_fc(paddle.concat(residuals)))
        return [nodes, cat_nodes]


class Block(nn.Layer):
    def __init__(self,
                 input_dims,
                 output_dim,
                 mm_dim=1600,
                 chunks=20,
                 rank=15,
                 shared=False,
                 dropout_input=0.,
                 dropout_pre_lin=0.,
                 dropout_output=0.,
                 pos_norm='before_cat'):
        super().__init__()
        self.rank = rank
        self.dropout_input = dropout_input
        self.dropout_pre_lin = dropout_pre_lin
        self.dropout_output = dropout_output
        assert (pos_norm in ['before_cat', 'after_cat'])
        self.pos_norm = pos_norm
        # Modules
        self.linear0 = nn.Linear(input_dims[0], mm_dim)
        self.linear1 = (self.linear0
                        if shared else nn.Linear(input_dims[1], mm_dim))
        self.merge_linears0 = nn.LayerList()
        self.merge_linears1 = nn.LayerList()
        self.chunks = self.chunk_sizes(mm_dim, chunks)
        for size in self.chunks:
            ml0 = nn.Linear(size, size * rank)
            self.merge_linears0.append(ml0)
            ml1 = ml0 if shared else nn.Linear(size, size * rank)
            self.merge_linears1.append(ml1)
        self.linear_out = nn.Linear(mm_dim, output_dim)

    def forward(self, x):
        x0 = self.linear0(x[0])
        x1 = self.linear1(x[1])
        bs = x1.shape[0]
        if self.dropout_input > 0:
            x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
            x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
        x0_chunks = paddle.split(x0, self.chunks, -1)
        x1_chunks = paddle.split(x1, self.chunks, -1)
        zs = []
        for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
                                      self.merge_linears1):
            m = m0(x0_c) * m1(x1_c)  # bs x split_size*rank
            m = m.reshape([bs, self.rank, -1])
            z = paddle.sum(m, 1)
            if self.pos_norm == 'before_cat':
                z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
                z = F.normalize(z)
            zs.append(z)
        z = paddle.concat(zs, 1)
        if self.pos_norm == 'after_cat':
            z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
            z = F.normalize(z)

        if self.dropout_pre_lin > 0:
            z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
        z = self.linear_out(z)
        if self.dropout_output > 0:
            z = F.dropout(z, p=self.dropout_output, training=self.training)
        return z

    def chunk_sizes(self, dim, chunks):
        split_size = (dim + chunks - 1) // chunks
        sizes_list = [split_size] * chunks
        sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
        return sizes_list