kie_sdmgr_head.py 7.9 KB
Newer Older
L
add kie  
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class SDMGRHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 num_chars=92,
                 visual_dim=16,
                 fusion_dim=1024,
                 node_input=32,
                 node_embed=256,
                 edge_input=5,
                 edge_embed=256,
                 num_gnn=2,
                 num_classes=26,
                 bidirectional=False):
        super().__init__()

        self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
        self.node_embed = nn.Embedding(num_chars, node_input, 0)
        hidden = node_embed // 2 if bidirectional else node_embed
        self.rnn = nn.LSTM(
            input_size=node_input, hidden_size=hidden, num_layers=1)
        self.edge_embed = nn.Linear(edge_input, edge_embed)
        self.gnn_layers = nn.LayerList(
            [GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
        self.node_cls = nn.Linear(node_embed, num_classes)
        self.edge_cls = nn.Linear(edge_embed, 2)

    def forward(self, input):
        relations, texts, x = input
        node_nums, char_nums = [], []
        for text in texts:
            node_nums.append(text.shape[0])
            char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))

        max_num = max([char_num.max() for char_num in char_nums])
        all_nodes = paddle.concat([
            paddle.concat(
                [text, paddle.zeros(
                    (text.shape[0], max_num - text.shape[1]))], -1)
            for text in texts
        ])
        temp = paddle.clip(all_nodes, min=0).astype(int)
        embed_nodes = self.node_embed(temp)
        rnn_nodes, _ = self.rnn(embed_nodes)

        b, h, w = rnn_nodes.shape
        nodes = paddle.zeros([b, w])
        all_nums = paddle.concat(char_nums)
        valid = paddle.nonzero((all_nums > 0).astype(int))
        temp_all_nums = (
            paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
        temp_all_nums = paddle.expand(temp_all_nums, [
            temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
        ])
        temp_all_nodes = paddle.gather(rnn_nodes, valid)
        N, C, A = temp_all_nodes.shape
        one_hot = F.one_hot(
            temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
        one_hot = paddle.multiply(
            temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
        t = one_hot.expand([N, 1, A]).squeeze(1)
        nodes = paddle.scatter(nodes, valid.squeeze(1), t)

        if x is not None:
            nodes = self.fusion([x, nodes])

        all_edges = paddle.concat(
            [rel.reshape([-1, rel.shape[-1]]) for rel in relations])
        embed_edges = self.edge_embed(all_edges.astype('float32'))
        embed_edges = F.normalize(embed_edges)

        for gnn_layer in self.gnn_layers:
            nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)

        node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
        return node_cls, edge_cls


class GNNLayer(nn.Layer):
    def __init__(self, node_dim=256, edge_dim=256):
        super().__init__()
        self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
        self.coef_fc = nn.Linear(node_dim, 1)
        self.out_fc = nn.Linear(node_dim, node_dim)
        self.relu = nn.ReLU()

    def forward(self, nodes, edges, nums):
        start, cat_nodes = 0, []
        for num in nums:
            sample_nodes = nodes[start:start + num]
            cat_nodes.append(
                paddle.concat([
                    paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
                    paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
                ], -1).reshape([num**2, -1]))
            start += num
        cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
        cat_nodes = self.relu(self.in_fc(cat_nodes))
        coefs = self.coef_fc(cat_nodes)

        start, residuals = 0, []
        for num in nums:
            residual = F.softmax(
                -paddle.eye(num).unsqueeze(-1) * 1e9 +
                coefs[start:start + num**2].reshape([num, num, -1]), 1)
            residuals.append((residual * cat_nodes[start:start + num**2]
                              .reshape([num, num, -1])).sum(1))
            start += num**2

        nodes += self.relu(self.out_fc(paddle.concat(residuals)))
        return [nodes, cat_nodes]


class Block(nn.Layer):
    def __init__(self,
                 input_dims,
                 output_dim,
                 mm_dim=1600,
                 chunks=20,
                 rank=15,
                 shared=False,
                 dropout_input=0.,
                 dropout_pre_lin=0.,
                 dropout_output=0.,
                 pos_norm='before_cat'):
        super().__init__()
        self.rank = rank
        self.dropout_input = dropout_input
        self.dropout_pre_lin = dropout_pre_lin
        self.dropout_output = dropout_output
        assert (pos_norm in ['before_cat', 'after_cat'])
        self.pos_norm = pos_norm
        # Modules
        self.linear0 = nn.Linear(input_dims[0], mm_dim)
        self.linear1 = (self.linear0
                        if shared else nn.Linear(input_dims[1], mm_dim))
        self.merge_linears0 = nn.LayerList()
        self.merge_linears1 = nn.LayerList()
        self.chunks = self.chunk_sizes(mm_dim, chunks)
        for size in self.chunks:
            ml0 = nn.Linear(size, size * rank)
            self.merge_linears0.append(ml0)
            ml1 = ml0 if shared else nn.Linear(size, size * rank)
            self.merge_linears1.append(ml1)
        self.linear_out = nn.Linear(mm_dim, output_dim)

    def forward(self, x):
        x0 = self.linear0(x[0])
        x1 = self.linear1(x[1])
        bs = x1.shape[0]
        if self.dropout_input > 0:
            x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
            x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
        x0_chunks = paddle.split(x0, self.chunks, -1)
        x1_chunks = paddle.split(x1, self.chunks, -1)
        zs = []
        for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
                                      self.merge_linears1):
            m = m0(x0_c) * m1(x1_c)  # bs x split_size*rank
            m = m.reshape([bs, self.rank, -1])
            z = paddle.sum(m, 1)
            if self.pos_norm == 'before_cat':
                z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
                z = F.normalize(z)
            zs.append(z)
        z = paddle.concat(zs, 1)
        if self.pos_norm == 'after_cat':
            z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
            z = F.normalize(z)

        if self.dropout_pre_lin > 0:
            z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
        z = self.linear_out(z)
        if self.dropout_output > 0:
            z = F.dropout(z, p=self.dropout_output, training=self.training)
        return z

    def chunk_sizes(self, dim, chunks):
        split_size = (dim + chunks - 1) // chunks
        sizes_list = [split_size] * chunks
        sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
        return sizes_list