det_mv3_db.yml 3.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5
Global:
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
W
WenmuZhou 已提交
6
  save_model_dir: ./output/db_mv3/
W
WenmuZhou 已提交
7
  save_epoch_step: 1200
L
LDOUBLEV 已提交
8
  # evaluation is run every 5000 iterations after the 4000th iteration
W
WenmuZhou 已提交
9 10 11 12
  eval_batch_step: 8
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: False
W
WenmuZhou 已提交
13 14
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints:
L
LDOUBLEV 已提交
15
  save_inference_dir:
W
WenmuZhou 已提交
16 17 18
  use_visualdl: True
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt
L
LDOUBLEV 已提交
19

W
WenmuZhou 已提交
20 21 22 23 24 25 26 27 28
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
    lr: 0.001
  regularizer:
    name: 'L2'
    factor: 0
L
LDOUBLEV 已提交
29

W
WenmuZhou 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
Architecture:
  type: det
  algorithm: DB
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  Neck:
    name: FPN
    out_channels: 256
  Head:
    name: DBHead
    k: 50
L
LDOUBLEV 已提交
44 45

Loss:
W
WenmuZhou 已提交
46
  name: DBLoss
L
LDOUBLEV 已提交
47 48 49 50 51 52 53
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

PostProcess:
W
WenmuZhou 已提交
54
  name: DBPostProcess
L
LDOUBLEV 已提交
55
  thresh: 0.3
W
WenmuZhou 已提交
56
  box_thresh: 0.6
L
LDOUBLEV 已提交
57
  max_candidates: 1000
W
WenmuZhou 已提交
58 59 60 61 62 63 64 65 66
  unclip_ratio: 1.5

Metric:
  name: DetMetric
  main_indicator: hmean

TRAIN:
  dataset:
    name: SimpleDataSet
W
WenmuZhou 已提交
67
    data_dir: ./detection/
W
WenmuZhou 已提交
68
    file_list:
W
WenmuZhou 已提交
69
      - ./detection/train_icdar2015_label.txt # dataset1
W
WenmuZhou 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
            - { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
      - EastRandomCropData:
          size: [ 640,640 ]
          max_tries: 50
          keep_ratio: true
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
W
WenmuZhou 已提交
99
          keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
W
WenmuZhou 已提交
100 101 102 103
  loader:
    shuffle: True
    drop_last: False
    batch_size: 16
W
WenmuZhou 已提交
104
    num_workers: 8
W
WenmuZhou 已提交
105 106 107 108

EVAL:
  dataset:
    name: SimpleDataSet
W
WenmuZhou 已提交
109
    data_dir: ./detection/
W
WenmuZhou 已提交
110
    file_list:
W
WenmuZhou 已提交
111
      - ./detection/test_icdar2015_label.txt
W
WenmuZhou 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736,1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
          keep_keys: ['image','shape','polys','ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size: 1 # must be 1
W
WenmuZhou 已提交
131
    num_workers: 8