Global: use_gpu: true epoch_num: 1200 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/db_mv3/ save_epoch_step: 1200 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: 8 # if pretrained_model is saved in static mode, load_static_weights must set to True load_static_weights: True cal_metric_during_train: False pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained checkpoints: save_inference_dir: use_visualdl: True infer_img: doc/imgs_en/img_10.jpg save_res_path: ./output/det_db/predicts_db.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 learning_rate: lr: 0.001 regularizer: name: 'L2' factor: 0 Architecture: type: det algorithm: DB Transform: Backbone: name: MobileNetV3 scale: 0.5 model_name: large Neck: name: FPN out_channels: 256 Head: name: DBHead k: 50 Loss: name: DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 beta: 10 ohem_ratio: 3 PostProcess: name: DBPostProcess thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5 Metric: name: DetMetric main_indicator: hmean TRAIN: dataset: name: SimpleDataSet data_dir: ./detection/ file_list: - ./detection/train_icdar2015_label.txt # dataset1 ratio_list: [1.0] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } - { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } } - { 'type': Resize,'args': { 'size': [ 0.5,3 ] } } - EastRandomCropData: size: [ 640,640 ] max_tries: 50 keep_ratio: true - MakeBorderMap: shrink_ratio: 0.4 thresh_min: 0.3 thresh_max: 0.7 - MakeShrinkMap: shrink_ratio: 0.4 min_text_size: 8 - NormalizeImage: scale: 1./255. mean: [ 0.485, 0.456, 0.406 ] std: [ 0.229, 0.224, 0.225 ] order: 'hwc' - ToCHWImage: - keepKeys: keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order loader: shuffle: True drop_last: False batch_size: 16 num_workers: 8 EVAL: dataset: name: SimpleDataSet data_dir: ./detection/ file_list: - ./detection/test_icdar2015_label.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - DetResizeForTest: image_shape: [736,1280] - NormalizeImage: scale: 1./255. mean: [ 0.485, 0.456, 0.406 ] std: [ 0.229, 0.224, 0.225 ] order: 'hwc' - ToCHWImage: - keepKeys: keep_keys: ['image','shape','polys','ignore_tags'] loader: shuffle: False drop_last: False batch_size: 1 # must be 1 num_workers: 8