README.md 10.9 KB
Newer Older
B
Bin Lu 已提交
1
English | [简体中文](README_ch.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
2

B
Bin Lu 已提交
3 4 5 6
- [Document Visual Question Answering (Doc-VQA)](#Document-Visual-Question-Answering)
  - [1. Introduction](#1-Introduction)
  - [2. Performance](#2-performance)
  - [3. Effect demo](#3-Effect-demo)
文幕地方's avatar
文幕地方 已提交
7 8
    - [3.1 SER](#31-ser)
    - [3.2 RE](#32-re)
B
Bin Lu 已提交
9 10 11 12 13
  - [4. Install](#4-Install)
    - [4.1 Installation dependencies](#41-Install-dependencies)
    - [4.2 Install PaddleOCR](#42-Install-PaddleOCR)
  - [5. Usage](#5-Usage)
    - [5.1 Data and Model Preparation](#51-Data-and-Model-Preparation)
文幕地方's avatar
文幕地方 已提交
14 15
    - [5.2 SER](#52-ser)
    - [5.3 RE](#53-re)
B
Bin Lu 已提交
16
  - [6. Reference](#6-Reference-Links)
M
update  
MissPenguin 已提交
17

B
Bin Lu 已提交
18
# Document Visual Question Answering
M
update  
MissPenguin 已提交
19

B
Bin Lu 已提交
20
## 1 Introduction
M
update  
MissPenguin 已提交
21

B
Bin Lu 已提交
22
VQA refers to visual question answering, which mainly asks and answers image content. DOC-VQA is one of the VQA tasks. DOC-VQA mainly asks questions about the text content of text images.
文幕地方's avatar
文幕地方 已提交
23

B
Bin Lu 已提交
24
The DOC-VQA algorithm in PP-Structure is developed based on the PaddleNLP natural language processing algorithm library.
文幕地方's avatar
add re  
文幕地方 已提交
25

B
Bin Lu 已提交
26
The main features are as follows:
文幕地方's avatar
add re  
文幕地方 已提交
27

B
Bin Lu 已提交
28 29 30 31 32
- Integrate [LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf) model and PP-OCR prediction engine.
- Supports Semantic Entity Recognition (SER) and Relation Extraction (RE) tasks based on multimodal methods. Based on the SER task, the text recognition and classification in the image can be completed; based on the RE task, the relationship extraction of the text content in the image can be completed, such as judging the problem pair (pair).
- Supports custom training for SER tasks and RE tasks.
- Supports end-to-end system prediction and evaluation of OCR+SER.
- Supports end-to-end system prediction of OCR+SER+RE.
littletomatodonkey's avatar
littletomatodonkey 已提交
33 34


B
Bin Lu 已提交
35 36
This project is an open source implementation of [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) on Paddle 2.2,
Included fine-tuning code on [XFUND dataset](https://github.com/doc-analysis/XFUND).
littletomatodonkey's avatar
littletomatodonkey 已提交
37

B
Bin Lu 已提交
38
## 2. Performance
littletomatodonkey's avatar
littletomatodonkey 已提交
39

B
Bin Lu 已提交
40
We evaluate the algorithm on the Chinese dataset of [XFUND](https://github.com/doc-analysis/XFUND), and the performance is as follows
文幕地方's avatar
add re  
文幕地方 已提交
41

B
Bin Lu 已提交
42
| Model | Task | hmean | Model download address |
文幕地方's avatar
文幕地方 已提交
43
|:---:|:---:|:---:| :---:|
B
Bin Lu 已提交
44 45 46 47 48
| LayoutXLM | SER | 0.9038 | [link](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
| LayoutXLM | RE | 0.7483 | [link](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
| LayoutLMv2 | SER | 0.8544 | [link](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar)
| LayoutLMv2 | RE | 0.6777 | [link](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
| LayoutLM | SER | 0.7731 | [link](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
文幕地方's avatar
add re  
文幕地方 已提交
49

B
Bin Lu 已提交
50
## 3. Effect demo
littletomatodonkey's avatar
littletomatodonkey 已提交
51

B
Bin Lu 已提交
52
**Note:** The test images are from the XFUND dataset.
littletomatodonkey's avatar
littletomatodonkey 已提交
53

M
update  
MissPenguin 已提交
54
<a name="31"></a>
文幕地方's avatar
文幕地方 已提交
55
### 3.1 SER
littletomatodonkey's avatar
littletomatodonkey 已提交
56

M
update  
MissPenguin 已提交
57
![](../docs/vqa/result_ser/zh_val_0_ser.jpg) | ![](../docs/vqa/result_ser/zh_val_42_ser.jpg)
文幕地方's avatar
add re  
文幕地方 已提交
58
---|---
littletomatodonkey's avatar
littletomatodonkey 已提交
59

B
Bin Lu 已提交
60
Boxes with different colors in the figure represent different categories. For the XFUND dataset, there are 3 categories: `QUESTION`, `ANSWER`, `HEADER`
littletomatodonkey's avatar
littletomatodonkey 已提交
61

B
Bin Lu 已提交
62 63 64
* Dark purple: HEADER
* Light purple: QUESTION
* Army Green: ANSWER
littletomatodonkey's avatar
littletomatodonkey 已提交
65

B
Bin Lu 已提交
66
The corresponding categories and OCR recognition results are also marked on the upper left of the OCR detection frame.
littletomatodonkey's avatar
littletomatodonkey 已提交
67

M
update  
MissPenguin 已提交
68
<a name="32"></a>
文幕地方's avatar
文幕地方 已提交
69
### 3.2 RE
littletomatodonkey's avatar
littletomatodonkey 已提交
70

M
update  
MissPenguin 已提交
71
![](../docs/vqa/result_re/zh_val_21_re.jpg) | ![](../docs/vqa/result_re/zh_val_40_re.jpg)
文幕地方's avatar
add re  
文幕地方 已提交
72
---|---
littletomatodonkey's avatar
littletomatodonkey 已提交
73 74


B
Bin Lu 已提交
75
The red box in the figure represents the question, the blue box represents the answer, and the question and the answer are connected by a green line. The corresponding categories and OCR recognition results are also marked on the upper left of the OCR detection frame.
littletomatodonkey's avatar
littletomatodonkey 已提交
76

B
Bin Lu 已提交
77
## 4. Install
文幕地方's avatar
add re  
文幕地方 已提交
78

B
Bin Lu 已提交
79
### 4.1 Install dependencies
littletomatodonkey's avatar
littletomatodonkey 已提交
80

B
Bin Lu 已提交
81
- **(1) Install PaddlePaddle**
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83

```bash
文幕地方's avatar
文幕地方 已提交
84
python3 -m pip install --upgrade pip
littletomatodonkey's avatar
littletomatodonkey 已提交
85

B
Bin Lu 已提交
86
# GPU installation
87
python3 -m pip install "paddlepaddle-gpu>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey 已提交
88

B
Bin Lu 已提交
89
# CPU installation
90
python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey 已提交
91

B
Bin Lu 已提交
92 93
````
For more requirements, please refer to the instructions in [Installation Documentation](https://www.paddlepaddle.org.cn/install/quick).
littletomatodonkey's avatar
littletomatodonkey 已提交
94

B
Bin Lu 已提交
95
### 4.2 Install PaddleOCR
littletomatodonkey's avatar
littletomatodonkey 已提交
96

B
Bin Lu 已提交
97
- **(1) pip install PaddleOCR whl package quickly (prediction only)**
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99

```bash
100
python3 -m pip install paddleocr
B
Bin Lu 已提交
101
````
littletomatodonkey's avatar
littletomatodonkey 已提交
102

B
Bin Lu 已提交
103
- **(2) Download VQA source code (prediction + training)**
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105

```bash
B
Bin Lu 已提交
106
[Recommended] git clone https://github.com/PaddlePaddle/PaddleOCR
littletomatodonkey's avatar
littletomatodonkey 已提交
107

B
Bin Lu 已提交
108
# If the pull cannot be successful due to network problems, you can also choose to use the hosting on the code cloud:
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110
git clone https://gitee.com/paddlepaddle/PaddleOCR

B
Bin Lu 已提交
111 112
# Note: Code cloud hosting code may not be able to synchronize the update of this github project in real time, there is a delay of 3 to 5 days, please use the recommended method first.
````
littletomatodonkey's avatar
littletomatodonkey 已提交
113

B
Bin Lu 已提交
114
- **(3) Install VQA's `requirements`**
littletomatodonkey's avatar
littletomatodonkey 已提交
115 116

```bash
117
python3 -m pip install -r ppstructure/vqa/requirements.txt
B
Bin Lu 已提交
118
````
littletomatodonkey's avatar
littletomatodonkey 已提交
119

B
Bin Lu 已提交
120
## 5. Usage
littletomatodonkey's avatar
littletomatodonkey 已提交
121

B
Bin Lu 已提交
122
### 5.1 Data and Model Preparation
littletomatodonkey's avatar
littletomatodonkey 已提交
123

B
Bin Lu 已提交
124
If you want to experience the prediction process directly, you can download the pre-training model provided by us, skip the training process, and just predict directly.
125

B
Bin Lu 已提交
126
* Download the processed dataset
127

128
The download address of the processed XFUND Chinese dataset: [link](https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar).
littletomatodonkey's avatar
littletomatodonkey 已提交
129 130


B
Bin Lu 已提交
131
Download and unzip the dataset, and place the dataset in the current directory after unzipping.
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133

```shell
134
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar
B
Bin Lu 已提交
135
````
littletomatodonkey's avatar
littletomatodonkey 已提交
136

B
Bin Lu 已提交
137
* Convert the dataset
littletomatodonkey's avatar
littletomatodonkey 已提交
138

B
Bin Lu 已提交
139
If you need to train other XFUND datasets, you can use the following commands to convert the datasets
littletomatodonkey's avatar
littletomatodonkey 已提交
140

B
Bin Lu 已提交
141 142 143
```bash
python3 ppstructure/vqa/tools/trans_xfun_data.py --ori_gt_path=path/to/json_path --output_path=path/to/save_path
````
littletomatodonkey's avatar
littletomatodonkey 已提交
144

B
Bin Lu 已提交
145
* Download the pretrained models
146
```bash
B
Bin Lu 已提交
147 148 149 150 151 152 153
mkdir pretrain && cd pretrain
#download the SER model
wget https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar && tar -xvf ser_LayoutXLM_xfun_zh.tar
#download the RE model
wget https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar && tar -xvf re_LayoutXLM_xfun_zh.tar
cd ../
````
littletomatodonkey's avatar
littletomatodonkey 已提交
154

M
update  
MissPenguin 已提交
155
<a name="52"></a>
文幕地方's avatar
文幕地方 已提交
156
### 5.2 SER
littletomatodonkey's avatar
littletomatodonkey 已提交
157

B
Bin Lu 已提交
158
Before starting training, you need to modify the following four fields
159

B
Bin Lu 已提交
160 161 162 163
1. `Train.dataset.data_dir`: point to the directory where the training set images are stored
2. `Train.dataset.label_file_list`: point to the training set label file
3. `Eval.dataset.data_dir`: refers to the directory where the validation set images are stored
4. `Eval.dataset.label_file_list`: point to the validation set label file
littletomatodonkey's avatar
littletomatodonkey 已提交
164

B
Bin Lu 已提交
165
* start training
littletomatodonkey's avatar
littletomatodonkey 已提交
166
```shell
167
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml
B
Bin Lu 已提交
168
````
littletomatodonkey's avatar
littletomatodonkey 已提交
169

B
Bin Lu 已提交
170 171
Finally, `precision`, `recall`, `hmean` and other indicators will be printed.
In the `./output/ser_layoutxlm/` folder will save the training log, the optimal model and the model for the latest epoch.
littletomatodonkey's avatar
littletomatodonkey 已提交
172

B
Bin Lu 已提交
173
* resume training
Z
zhoujun 已提交
174

B
Bin Lu 已提交
175
To resume training, assign the folder path of the previously trained model to the `Architecture.Backbone.checkpoints` field.
176

Z
zhoujun 已提交
177
```shell
178
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
B
Bin Lu 已提交
179
````
Z
zhoujun 已提交
180

B
Bin Lu 已提交
181
* evaluate
Z
zhoujun 已提交
182

B
Bin Lu 已提交
183
Evaluation requires assigning the folder path of the model to be evaluated to the `Architecture.Backbone.checkpoints` field.
littletomatodonkey's avatar
littletomatodonkey 已提交
184 185

```shell
186
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
B
Bin Lu 已提交
187 188
````
Finally, `precision`, `recall`, `hmean` and other indicators will be printed
littletomatodonkey's avatar
littletomatodonkey 已提交
189

B
Bin Lu 已提交
190
* Use `OCR engine + SER` tandem prediction
littletomatodonkey's avatar
littletomatodonkey 已提交
191

B
Bin Lu 已提交
192
Use the following command to complete the series prediction of `OCR engine + SER`, taking the pretrained SER model as an example:
littletomatodonkey's avatar
littletomatodonkey 已提交
193 194

```shell
B
Bin Lu 已提交
195 196
CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/Global.infer_img=doc/vqa/input/zh_val_42.jpg
````
littletomatodonkey's avatar
littletomatodonkey 已提交
197

B
Bin Lu 已提交
198
Finally, the prediction result visualization image and the prediction result text file will be saved in the directory configured by the `config.Global.save_res_path` field. The prediction result text file is named `infer_results.txt`.
199

B
Bin Lu 已提交
200
* End-to-end evaluation of `OCR engine + SER` prediction system
littletomatodonkey's avatar
littletomatodonkey 已提交
201

B
Bin Lu 已提交
202
First use the `tools/infer_vqa_token_ser.py` script to complete the prediction of the dataset, then use the following command to evaluate.
203

littletomatodonkey's avatar
littletomatodonkey 已提交
204 205
```shell
export CUDA_VISIBLE_DEVICES=0
B
Bin Lu 已提交
206 207
python3 tools/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt
````
littletomatodonkey's avatar
littletomatodonkey 已提交
208

M
update  
MissPenguin 已提交
209
<a name="53"></a>
文幕地方's avatar
文幕地方 已提交
210
### 5.3 RE
littletomatodonkey's avatar
littletomatodonkey 已提交
211

B
Bin Lu 已提交
212
* start training
littletomatodonkey's avatar
littletomatodonkey 已提交
213

B
Bin Lu 已提交
214
Before starting training, you need to modify the following four fields
文幕地方's avatar
add re  
文幕地方 已提交
215

B
Bin Lu 已提交
216 217 218 219
1. `Train.dataset.data_dir`: point to the directory where the training set images are stored
2. `Train.dataset.label_file_list`: point to the training set label file
3. `Eval.dataset.data_dir`: refers to the directory where the validation set images are stored
4. `Eval.dataset.label_file_list`: point to the validation set label file
Z
zhoujun 已提交
220 221

```shell
222
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml
B
Bin Lu 已提交
223
````
Z
zhoujun 已提交
224

B
Bin Lu 已提交
225 226
Finally, `precision`, `recall`, `hmean` and other indicators will be printed.
In the `./output/re_layoutxlm/` folder will save the training log, the optimal model and the model for the latest epoch.
227

B
Bin Lu 已提交
228
* resume training
229

B
Bin Lu 已提交
230
To resume training, assign the folder path of the previously trained model to the `Architecture.Backbone.checkpoints` field.
文幕地方's avatar
add re  
文幕地方 已提交
231

Z
zhoujun 已提交
232
```shell
233
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
B
Bin Lu 已提交
234
````
Z
zhoujun 已提交
235

B
Bin Lu 已提交
236
* evaluate
Z
zhoujun 已提交
237

B
Bin Lu 已提交
238
Evaluation requires assigning the folder path of the model to be evaluated to the `Architecture.Backbone.checkpoints` field.
文幕地方's avatar
add re  
文幕地方 已提交
239 240

```shell
241
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
B
Bin Lu 已提交
242 243
````
Finally, `precision`, `recall`, `hmean` and other indicators will be printed
文幕地方's avatar
add re  
文幕地方 已提交
244

B
Bin Lu 已提交
245
* Use `OCR engine + SER + RE` tandem prediction
文幕地方's avatar
add re  
文幕地方 已提交
246

B
Bin Lu 已提交
247
Use the following command to complete the series prediction of `OCR engine + SER + RE`, taking the pretrained SER and RE models as an example:
文幕地方's avatar
add re  
文幕地方 已提交
248 249
```shell
export CUDA_VISIBLE_DEVICES=0
B
Bin Lu 已提交
250 251
python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/re_LayoutXLM_xfun_zh/Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm. yml -o_ser Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/
````
littletomatodonkey's avatar
littletomatodonkey 已提交
252

B
Bin Lu 已提交
253
Finally, the prediction result visualization image and the prediction result text file will be saved in the directory configured by the `config.Global.save_res_path` field. The prediction result text file is named `infer_results.txt`.
254

B
Bin Lu 已提交
255
## 6. Reference Links
littletomatodonkey's avatar
littletomatodonkey 已提交
256 257 258 259

- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND
M
MissPenguin 已提交
260 261 262 263

## License

The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)