README.md 9.7 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1
# 文档视觉问答(DOC-VQA)
littletomatodonkey's avatar
littletomatodonkey 已提交
2

文幕地方's avatar
文幕地方 已提交
3
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
文幕地方's avatar
add re  
文幕地方 已提交
4 5 6 7

PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。

主要特性如下:
littletomatodonkey's avatar
littletomatodonkey 已提交
8 9

- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
文幕地方's avatar
文幕地方 已提交
10 11
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
文幕地方's avatar
add re  
文幕地方 已提交
12 13
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
littletomatodonkey's avatar
littletomatodonkey 已提交
14 15 16 17 18


本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。

文幕地方's avatar
add re  
文幕地方 已提交
19 20 21 22
## 1 性能

我们在 [XFUN](https://github.com/doc-analysis/XFUND) 评估数据集上对算法进行了评估,性能如下

文幕地方's avatar
文幕地方 已提交
23
|任务|    f1 | 模型下载地址|
文幕地方's avatar
add re  
文幕地方 已提交
24 25 26 27 28 29 30
|:---:|:---:| :---:|
|SER|0.9056| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar)|
|RE|0.7113| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar)|



## 2. 效果演示
littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33

**注意:** 测试图片来源于XFUN数据集。

文幕地方's avatar
add re  
文幕地方 已提交
34
### 2.1 SER
littletomatodonkey's avatar
littletomatodonkey 已提交
35

文幕地方's avatar
add re  
文幕地方 已提交
36 37
![](./images/result_ser/zh_val_0_ser.jpg) | ![](./images/result_ser/zh_val_42_ser.jpg)
---|---
littletomatodonkey's avatar
littletomatodonkey 已提交
38

文幕地方's avatar
add re  
文幕地方 已提交
39
图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
littletomatodonkey's avatar
littletomatodonkey 已提交
40

文幕地方's avatar
add re  
文幕地方 已提交
41 42 43
* 深紫色:HEADER
* 浅紫色:QUESTION
* 军绿色:ANSWER
littletomatodonkey's avatar
littletomatodonkey 已提交
44

文幕地方's avatar
add re  
文幕地方 已提交
45
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey 已提交
46 47


文幕地方's avatar
add re  
文幕地方 已提交
48
### 2.2 RE
littletomatodonkey's avatar
littletomatodonkey 已提交
49

文幕地方's avatar
add re  
文幕地方 已提交
50 51
![](./images/result_re/zh_val_21_re.jpg) | ![](./images/result_re/zh_val_40_re.jpg)
---|---
littletomatodonkey's avatar
littletomatodonkey 已提交
52 53


文幕地方's avatar
add re  
文幕地方 已提交
54
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey 已提交
55

文幕地方's avatar
add re  
文幕地方 已提交
56 57 58 59

## 3. 安装

### 3.1 安装依赖
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

- **(1) 安装PaddlePaddle**

```bash
pip3 install --upgrade pip

# GPU安装
python3 -m pip install paddlepaddle-gpu==2.2 -i https://mirror.baidu.com/pypi/simple

# CPU安装
python3 -m pip install paddlepaddle==2.2 -i https://mirror.baidu.com/pypi/simple

```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。


文幕地方's avatar
add re  
文幕地方 已提交
76
### 3.2 安装PaddleOCR(包含 PP-OCR 和 VQA )
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80

- **(1)pip快速安装PaddleOCR whl包(仅预测)**

```bash
文幕地方's avatar
add re  
文幕地方 已提交
81
pip install paddleocr
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83
```

littletomatodonkey's avatar
littletomatodonkey 已提交
84
- **(2)下载VQA源码(预测+训练)**
littletomatodonkey's avatar
littletomatodonkey 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR

# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR

# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```

- **(3)安装PaddleNLP**

```bash
# 需要使用PaddleNLP最新的代码版本进行安装
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
Z
zhoujun 已提交
101
pip3 install -e .
littletomatodonkey's avatar
littletomatodonkey 已提交
102 103 104
```


littletomatodonkey's avatar
littletomatodonkey 已提交
105
- **(4)安装VQA的`requirements`**
littletomatodonkey's avatar
littletomatodonkey 已提交
106 107

```bash
文幕地方's avatar
add re  
文幕地方 已提交
108
cd ppstructure/vqa
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111
pip install -r requirements.txt
```

文幕地方's avatar
add re  
文幕地方 已提交
112
## 4. 使用
littletomatodonkey's avatar
littletomatodonkey 已提交
113 114


文幕地方's avatar
add re  
文幕地方 已提交
115
### 4.1 数据和预训练模型准备
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119 120 121 122 123 124 125 126 127

处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)


下载并解压该数据集,解压后将数据集放置在当前目录下。

```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```

如果希望转换XFUN中其他语言的数据集,可以参考[XFUN数据转换脚本](helper/trans_xfun_data.py)

文幕地方's avatar
add re  
文幕地方 已提交
128
如果希望直接体验预测过程,可以下载我们提供的预训练模型,跳过训练过程,直接预测即可。
littletomatodonkey's avatar
littletomatodonkey 已提交
129 130


文幕地方's avatar
add re  
文幕地方 已提交
131
### 4.2 SER任务
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133 134 135

* 启动训练

```shell
文幕地方's avatar
add re  
文幕地方 已提交
136
python3.7 train_ser.py \
littletomatodonkey's avatar
littletomatodonkey 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
    --model_name_or_path "layoutxlm-base-uncased" \
    --train_data_dir "XFUND/zh_train/image" \
    --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --num_train_epochs 200 \
    --eval_steps 10 \
    --output_dir "./output/ser/" \
    --learning_rate 5e-5 \
    --warmup_steps 50 \
    --evaluate_during_training \
    --seed 2048
```

文幕地方's avatar
add re  
文幕地方 已提交
151
最终会打印出`precision`, `recall`, `f1`等指标,模型和训练日志会保存在`./output/ser/`文件夹中。
littletomatodonkey's avatar
littletomatodonkey 已提交
152

Z
zhoujun 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
* 恢复训练

```shell
python3.7 train_ser.py \
    --model_name_or_path "model_path" \
    --train_data_dir "XFUND/zh_train/image" \
    --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --num_train_epochs 200 \
    --eval_steps 10 \
    --output_dir "./output/ser/" \
    --learning_rate 5e-5 \
    --warmup_steps 50 \
    --evaluate_during_training \
文幕地方's avatar
文幕地方 已提交
168
    --num_workers 8 \
Z
zhoujun 已提交
169 170 171 172 173 174 175 176 177 178 179 180
    --seed 2048 \
    --resume
```

* 评估
```shell
export CUDA_VISIBLE_DEVICES=0
python3 eval_ser.py \
    --model_name_or_path "PP-Layout_v1.0_ser_pretrained/" \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --per_gpu_eval_batch_size 8 \
文幕地方's avatar
文幕地方 已提交
181
    --num_workers 8 \
Z
zhoujun 已提交
182 183 184 185 186
    --output_dir "output/ser/"  \
    --seed 2048
```
最终会打印出`precision`, `recall`, `f1`等指标

littletomatodonkey's avatar
littletomatodonkey 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
* 使用评估集合中提供的OCR识别结果进行预测

```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser.py \
    --model_name_or_path "./PP-Layout_v1.0_ser_pretrained/" \
    --output_dir "output_res/" \
    --infer_imgs "XFUND/zh_val/image/" \
    --ocr_json_path "XFUND/zh_val/xfun_normalize_val.json"
```

最终会在`output_res`目录下保存预测结果可视化图像以及预测结果文本文件,文件名为`infer_results.txt`

* 使用`OCR引擎 + SER`串联结果

```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser_e2e.py \
    --model_name_or_path "./output/PP-Layout_v1.0_ser_pretrained/" \
    --max_seq_length 512 \
文幕地方's avatar
add re  
文幕地方 已提交
207 208
    --output_dir "output_res_e2e/" \
    --infer_imgs "images/input/zh_val_0.jpg"
littletomatodonkey's avatar
littletomatodonkey 已提交
209 210 211 212 213 214
```

*`OCR引擎 + SER`预测系统进行端到端评估

```shell
export CUDA_VISIBLE_DEVICES=0
文幕地方's avatar
add re  
文幕地方 已提交
215
python3.7 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json  --pred_json_path output_res/infer_results.txt
littletomatodonkey's avatar
littletomatodonkey 已提交
216 217 218
```


文幕地方's avatar
add re  
文幕地方 已提交
219
### 3.3 RE任务
littletomatodonkey's avatar
littletomatodonkey 已提交
220

文幕地方's avatar
add re  
文幕地方 已提交
221
* 启动训练
littletomatodonkey's avatar
littletomatodonkey 已提交
222

文幕地方's avatar
add re  
文幕地方 已提交
223
```shell
Z
zhoujun 已提交
224
export CUDA_VISIBLE_DEVICES=0
文幕地方's avatar
add re  
文幕地方 已提交
225 226 227 228 229 230 231
python3 train_re.py \
    --model_name_or_path "layoutxlm-base-uncased" \
    --train_data_dir "XFUND/zh_train/image" \
    --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --label_map_path 'labels/labels_ser.txt' \
文幕地方's avatar
文幕地方 已提交
232
    --num_train_epochs 200 \
文幕地方's avatar
add re  
文幕地方 已提交
233 234 235 236 237 238
    --eval_steps 10 \
    --output_dir "output/re/"  \
    --learning_rate 5e-5 \
    --warmup_steps 50 \
    --per_gpu_train_batch_size 8 \
    --per_gpu_eval_batch_size 8 \
文幕地方's avatar
文幕地方 已提交
239
    --num_workers 8 \
文幕地方's avatar
add re  
文幕地方 已提交
240 241 242 243 244
    --evaluate_during_training \
    --seed 2048

```

Z
zhoujun 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
* 恢复训练

```shell
export CUDA_VISIBLE_DEVICES=0
python3 train_re.py \
    --model_name_or_path "model_path" \
    --train_data_dir "XFUND/zh_train/image" \
    --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --label_map_path 'labels/labels_ser.txt' \
    --num_train_epochs 2 \
    --eval_steps 10 \
    --output_dir "output/re/"  \
    --learning_rate 5e-5 \
    --warmup_steps 50 \
    --per_gpu_train_batch_size 8 \
    --per_gpu_eval_batch_size 8 \
文幕地方's avatar
文幕地方 已提交
263
    --num_workers 8 \
Z
zhoujun 已提交
264 265 266 267 268 269
    --evaluate_during_training \
    --seed 2048 \
    --resume

```

文幕地方's avatar
add re  
文幕地方 已提交
270 271
最终会打印出`precision`, `recall`, `f1`等指标,模型和训练日志会保存在`./output/re/`文件夹中。

Z
zhoujun 已提交
272 273 274 275 276 277 278 279 280 281 282
* 评估
```shell
export CUDA_VISIBLE_DEVICES=0
python3 eval_re.py \
    --model_name_or_path "output/check/checkpoint-best" \
    --max_seq_length 512 \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --label_map_path 'labels/labels_ser.txt' \
    --output_dir "output/re_test/"  \
    --per_gpu_eval_batch_size 8 \
文幕地方's avatar
文幕地方 已提交
283
    --num_workers 8 \
Z
zhoujun 已提交
284 285 286 287 288
    --seed 2048
```
最终会打印出`precision`, `recall`, `f1`等指标


文幕地方's avatar
add re  
文幕地方 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
* 使用评估集合中提供的OCR识别结果进行预测

```shell
export CUDA_VISIBLE_DEVICES=0
python3 infer_re.py \
    --model_name_or_path "./PP-Layout_v1.0_re_pretrained/" \
    --max_seq_length 512 \
    --eval_data_dir "XFUND/zh_val/image" \
    --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
    --label_map_path 'labels/labels_ser.txt' \
    --output_dir "output_res"  \
    --per_gpu_eval_batch_size 1 \
    --seed 2048
```

最终会在`output_res`目录下保存预测结果可视化图像以及预测结果文本文件,文件名为`infer_results.txt`

* 使用`OCR引擎 + SER + RE`串联结果

```shell
export CUDA_VISIBLE_DEVICES=0
Z
zhoujun 已提交
310
python3.7 infer_ser_re_e2e.py \
文幕地方's avatar
add re  
文幕地方 已提交
311 312 313 314 315 316
    --model_name_or_path "./PP-Layout_v1.0_ser_pretrained/" \
    --re_model_name_or_path "./PP-Layout_v1.0_re_pretrained/" \
    --max_seq_length 512 \
    --output_dir "output_ser_re_e2e_train/" \
    --infer_imgs "images/input/zh_val_21.jpg"
```
littletomatodonkey's avatar
littletomatodonkey 已提交
317 318 319 320 321 322

## 参考链接

- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND