quickstart_en.md 11.5 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

文幕地方's avatar
文幕地方 已提交
3 4 5
- [1. Install package](#1-install-package)
- [2. Use](#2-use)
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
文幕地方's avatar
文幕地方 已提交
12
  - [2.2 Use by code](#22-use-by-code)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
17
    - [2.2.5 DocVQA](#225-dockie)
littletomatodonkey's avatar
littletomatodonkey 已提交
18
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
19
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
20 21
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
22
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
23
  - [2.4 Parameter Description](#24-parameter-description)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
文幕地方's avatar
文幕地方 已提交
27
## 1. Install package
M
update  
MissPenguin 已提交
28 29

```bash
A
an1018 已提交
30 31
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
A
an1018 已提交
32

A
an1018 已提交
33 34
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
A
an1018 已提交
35 36 37 38 39 40 41 42

# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
pip3 install -r ppstructure/kie/requirements.txt

# Install the layout recovery dependency packages (if you do not use the layout recovery, you can skip it)
pip3 install -r ppstructure/recovery/requirements.txt


M
update  
MissPenguin 已提交
43 44 45
```

<a name="2"></a>
A
an1018 已提交
46

文幕地方's avatar
文幕地方 已提交
47
## 2. Use
M
update  
MissPenguin 已提交
48 49

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
50
### 2.1 Use by command line
51

M
update  
MissPenguin 已提交
52
<a name="211"></a>
53
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
54
```bash
55
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
56 57 58
```

<a name="212"></a>
59
#### 2.1.2 layout analysis + table recognition
60
```bash
61
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
62 63 64
```

<a name="213"></a>
65
#### 2.1.3 layout analysis
66
```bash
67
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
68 69 70
```

<a name="214"></a>
71 72 73 74 75 76
#### 2.1.4 table recognition
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```

<a name="215"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
77
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
78

littletomatodonkey's avatar
littletomatodonkey 已提交
79
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
80

A
an1018 已提交
81 82
<a name="216"></a>
#### 2.1.6 layout recovery
A
an1018 已提交
83 84
```
# Chinese pic
A
an1018 已提交
85
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
A
an1018 已提交
86 87
# English pic
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en'
A
an1018 已提交
88 89
```

M
update  
MissPenguin 已提交
90
<a name="22"></a>
文幕地方's avatar
文幕地方 已提交
91
### 2.2 Use by code
M
update  
MissPenguin 已提交
92 93

<a name="221"></a>
94
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
95 96 97 98 99 100

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

101
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
102

103 104
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
105 106 107 108 109 110 111 112 113 114
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

115
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
116 117 118 119 120 121 122
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

littletomatodonkey's avatar
littletomatodonkey 已提交
144
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # font provieded in PaddleOCR
145 146 147 148 149 150 151 152
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

172 173
<a name="224"></a>
#### 2.2.4 table recognition
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

193
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
194
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
195

littletomatodonkey's avatar
littletomatodonkey 已提交
196
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
197

A
an1018 已提交
198 199 200 201 202 203 204
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
A
an1018 已提交
205
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
A
an1018 已提交
206

A
an1018 已提交
207 208 209 210
# Chinese image
table_engine = PPStructure(recovery=True)
# English image
# table_engine = PPStructure(recovery=True, lang='en')
A
an1018 已提交
211 212

save_folder = './output'
A
an1018 已提交
213
img_path = 'ppstructure/docs/table/1.png'
A
an1018 已提交
214 215 216 217 218 219 220 221 222
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
A
an1018 已提交
223 224
res = sorted_layout_boxes(result, w)
convert_info_docx(img, res, save_folder, os.path.basename(img_path).split('.')[0])
A
an1018 已提交
225 226
```

M
update  
MissPenguin 已提交
227
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
228 229 230
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
231 232

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
233
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
234 235 236 237 238 239 240 241 242
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
243
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
244

245 246
| field | description  |
| --- |---|
文幕地方's avatar
文幕地方 已提交
247 248 249
|type| Type of image area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
250

文幕地方's avatar
文幕地方 已提交
251
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
252 253 254
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
255 256 257
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
258 259 260
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
261
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
262

littletomatodonkey's avatar
littletomatodonkey 已提交
263
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
264 265

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
266 267
### 2.4 Parameter Description

268 269 270 271 272 273 274 275 276 277 278
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
279
| kie_algorithm  | kie model algorithm| LayoutXLM|
280 281
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
282
| mode | structure or kie  | structure   |
283 284 285 286 287
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
288
| save_pdf    | Whether to convert docx to pdf when recovery| False |
289 290
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
291
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)