utility.py 23.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66 67 68 69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
W
WenmuZhou 已提交
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
W
WenmuZhou 已提交
71 72
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
73
    # params for text recognizer
L
LDOUBLEV 已提交
74 75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
76
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
L
LDOUBLEV 已提交
77
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
78
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
79 80 81 82
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
83 84
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
85
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
86
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
87

J
Jethong 已提交
88 89 90 91 92 93 94 95 96
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
97
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
98
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey 已提交
99
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
J
Jethong 已提交
100
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
101

W
WenmuZhou 已提交
102 103 104 105 106
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
107
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
108 109 110
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
111
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
112
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
113
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
114

L
LDOUBLEV 已提交
115
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
116
    parser.add_argument("--use_mp", type=str2bool, default=False)
117 118
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
119

littletomatodonkey's avatar
littletomatodonkey 已提交
120
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
121
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
122

W
WenmuZhou 已提交
123
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
124
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
125
    return parser
W
WenmuZhou 已提交
126

127

128
def parse_args():
W
WenmuZhou 已提交
129
    parser = init_args()
L
LDOUBLEV 已提交
130 131 132
    return parser.parse_args()


W
WenmuZhou 已提交
133 134 135 136 137
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
138
    elif mode == 'rec':
W
WenmuZhou 已提交
139
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
140 141
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
142 143
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
144 145 146 147

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
148 149 150 151 152 153 154 155 156
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None

L
LDOUBLEV 已提交
157
    else:
T
tink2123 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
176
        else:
T
tink2123 已提交
177 178 179 180 181
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
182
                logger.warning(
L
LDOUBLEV 已提交
183
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
T
tink2123 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
            if mode == "det":
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
                    "x": [1, 3, 2000, 2000],
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
                min_input_shape = {"x": [1, 3, 32, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
                min_input_shape = {"x": [1, 3, 10, 10]}
                max_input_shape = {"x": [1, 3, 1000, 1000]}
                opt_input_shape = {"x": [1, 3, 500, 500]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
L
LDOUBLEV 已提交
270

L
LDOUBLEV 已提交
271
        else:
T
tink2123 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()

        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
        output_names = predictor.get_output_names()
        output_tensors = []
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
        return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
305 306


L
LDOUBLEV 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
def get_infer_gpuid():
    cmd = "nvidia-smi"
    res = os.popen(cmd).readlines()
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
337
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
338 339 340 341
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
342
    return src_im
L
LDOUBLEV 已提交
343 344


L
LDOUBLEV 已提交
345 346
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
347
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
348 349 350 351 352
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
353 354
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
355 356


W
WenmuZhou 已提交
357 358 359 360 361
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
362
             font_path="./doc/fonts/simfang.ttf"):
363 364 365
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
366
        image(Image|array): RGB image
367 368 369 370
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
371
        font_path: the path of font which is used to draw text
372 373 374
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
375 376
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
377 378 379 380
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
381
            continue
W
WenmuZhou 已提交
382
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
383
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
384
    if txts is not None:
L
LDOUBLEV 已提交
385
        img = np.array(resize_img(image, input_size=600))
386
        txt_img = text_visual(
W
WenmuZhou 已提交
387 388 389 390 391 392
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
393
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
394 395
        return img
    return image
396 397


W
WenmuZhou 已提交
398 399 400 401 402 403
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
404 405 406
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
407 408

    import random
L
LDOUBLEV 已提交
409

410 411 412
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
413 414 415
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
416 417
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
418
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
419 420 421 422 423 424 425 426 427 428
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
429 430
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
431
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
432 433 434
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
435 436
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
437 438 439
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
440
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
441 442
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
443 444 445 446
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
447 448 449
    return np.array(img_show)


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
474 475 476 477 478 479
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
480 481 482 483 484 485 486
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
487
        font_path: the path of font which is used to draw text
488 489 490 491 492 493 494 495 496
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
497 498
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
499
        return blank_img, draw_txt
L
LDOUBLEV 已提交
500

501 502 503 504
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
505
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
506 507 508

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
509
    count, index = 1, 0
510 511
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
512
        if scores[idx] < threshold or math.isnan(scores[idx]):
513 514 515 516 517 518 519 520 521 522 523
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
524
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
525 526 527 528 529
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
530
            count += 1
531 532 533
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
534
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
535
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
536
        # whether add new blank img or not
L
LDOUBLEV 已提交
537
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
538 539 540
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
541
        count += 1
542 543 544 545 546 547
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
548 549


D
dyning 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
604
if __name__ == '__main__':
L
LDOUBLEV 已提交
605
    pass