save_load.py 7.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27
from ppocr.utils.logging import get_logger

28
__all__ = ['load_model']
L
LDOUBLEV 已提交
29 30


W
WenmuZhou 已提交
31
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


47
def load_model(config, model, optimizer=None, model_type='det'):
L
LDOUBLEV 已提交
48 49 50
    """
    load model from checkpoint or pretrained_model
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    logger = get_logger()
Y
YukSing 已提交
52 53 54
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
55
    best_model_dict = {}
56
    is_float16 = False
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    if model_type == 'vqa':
        checkpoints = config['Architecture']['Backbone']['checkpoints']
        # load vqa method metric
        if checkpoints:
            if os.path.exists(os.path.join(checkpoints, 'metric.states')):
                with open(os.path.join(checkpoints, 'metric.states'),
                          'rb') as f:
                    states_dict = pickle.load(f) if six.PY2 else pickle.load(
                        f, encoding='latin1')
                best_model_dict = states_dict.get('best_model_dict', {})
                if 'epoch' in states_dict:
                    best_model_dict['start_epoch'] = states_dict['epoch'] + 1
            logger.info("resume from {}".format(checkpoints))

            if optimizer is not None:
                if checkpoints[-1] in ['/', '\\']:
                    checkpoints = checkpoints[:-1]
                if os.path.exists(checkpoints + '.pdopt'):
                    optim_dict = paddle.load(checkpoints + '.pdopt')
                    optimizer.set_state_dict(optim_dict)
                else:
                    logger.warning(
                        "{}.pdopt is not exists, params of optimizer is not loaded".
                        format(checkpoints))
        return best_model_dict

L
LDOUBLEV 已提交
84
    if checkpoints:
85
        if checkpoints.endswith('.pdparams'):
86
            checkpoints = checkpoints.replace('.pdparams', '')
87
        assert os.path.exists(checkpoints + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
88
            "The {}.pdparams does not exists!".format(checkpoints)
89

90 91 92 93 94 95
        # load params from trained model
        params = paddle.load(checkpoints + '.pdparams')
        state_dict = model.state_dict()
        new_state_dict = {}
        for key, value in state_dict.items():
            if key not in params:
96 97
                logger.warning("{} not in loaded params {} !".format(
                    key, params.keys()))
文幕地方's avatar
文幕地方 已提交
98
                continue
99
            pre_value = params[key]
100 101 102
            if pre_value.dtype == paddle.float16:
                pre_value = pre_value.astype(paddle.float32)
                is_float16 = True
103 104 105 106
            if list(value.shape) == list(pre_value.shape):
                new_state_dict[key] = pre_value
            else:
                logger.warning(
107 108
                    "The shape of model params {} {} not matched with loaded params shape {} !".
                    format(key, value.shape, pre_value.shape))
109
        model.set_state_dict(new_state_dict)
110 111 112 113
        if is_float16:
            logger.info(
                "The parameter type is float16, which is converted to float32 when loading"
            )
W
WenmuZhou 已提交
114
        if optimizer is not None:
文幕地方's avatar
文幕地方 已提交
115 116 117 118 119 120 121
            if os.path.exists(checkpoints + '.pdopt'):
                optim_dict = paddle.load(checkpoints + '.pdopt')
                optimizer.set_state_dict(optim_dict)
            else:
                logger.warning(
                    "{}.pdopt is not exists, params of optimizer is not loaded".
                    format(checkpoints))
W
WenmuZhou 已提交
122 123 124 125 126 127 128 129 130 131

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
132
        is_float16 = load_pretrained_params(model, pretrained_model)
133
    else:
W
WenmuZhou 已提交
134
        logger.info('train from scratch')
135
    best_model_dict['is_float16'] = is_float16
W
WenmuZhou 已提交
136
    return best_model_dict
L
LDOUBLEV 已提交
137 138


L
fix bug  
LDOUBLEV 已提交
139
def load_pretrained_params(model, path):
140
    logger = get_logger()
141
    if path.endswith('.pdparams'):
142 143
        path = path.replace('.pdparams', '')
    assert os.path.exists(path + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
144
        "The {}.pdparams does not exists!".format(path)
145 146

    params = paddle.load(path + '.pdparams')
L
fix bug  
LDOUBLEV 已提交
147 148
    state_dict = model.state_dict()
    new_state_dict = {}
149
    is_float16 = False
T
tink2123 已提交
150 151 152
    for k1 in params.keys():
        if k1 not in state_dict.keys():
            logger.warning("The pretrained params {} not in model".format(k1))
L
LDOUBLEV 已提交
153
        else:
154 155 156
            if params[k1].dtype == paddle.float16:
                params[k1] = params[k1].astype(paddle.float32)
                is_float16 = True
T
tink2123 已提交
157 158 159 160 161 162
            if list(state_dict[k1].shape) == list(params[k1].shape):
                new_state_dict[k1] = params[k1]
            else:
                logger.warning(
                    "The shape of model params {} {} not matched with loaded params {} {} !".
                    format(k1, state_dict[k1].shape, k1, params[k1].shape))
163

L
fix bug  
LDOUBLEV 已提交
164
    model.set_state_dict(new_state_dict)
165 166 167 168
    if is_float16:
        logger.info(
            "The parameter type is float16, which is converted to float32 when loading"
        )
169
    logger.info("load pretrain successful from {}".format(path))
170
    return is_float16
D
Double_V 已提交
171

172

173
def save_model(model,
W
WenmuZhou 已提交
174 175 176
               optimizer,
               model_path,
               logger,
177
               config,
W
WenmuZhou 已提交
178 179 180
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
181 182 183
    """
    save model to the target path
    """
W
WenmuZhou 已提交
184 185
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
W
WenmuZhou 已提交
186
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
187 188 189 190 191 192 193 194 195
    if config['Architecture']["model_type"] != 'vqa':
        paddle.save(model.state_dict(), model_prefix + '.pdparams')
        metric_prefix = model_prefix
    else:
        if config['Global']['distributed']:
            model._layers.backbone.model.save_pretrained(model_prefix)
        else:
            model.backbone.model.save_pretrained(model_prefix)
        metric_prefix = os.path.join(model_prefix, 'metric')
W
WenmuZhou 已提交
196
    # save metric and config
Z
zhoujun 已提交
197 198
    with open(metric_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
W
WenmuZhou 已提交
199 200 201 202
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))