main.cpp 10.4 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
M
MissPenguin 已提交
34
#include <include/utility.h>
M
MissPenguin 已提交
35 36 37
#include <sys/stat.h>

#include <gflags/gflags.h>
M
MissPenguin 已提交
38
#include "auto_log/autolog.h"
M
MissPenguin 已提交
39 40 41 42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
M
MissPenguin 已提交
43 44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
M
MissPenguin 已提交
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
M
MissPenguin 已提交
46 47 48
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
M
MissPenguin 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
M
MissPenguin 已提交
64
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
M
MissPenguin 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


M
MissPenguin 已提交
84 85
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
M
MissPenguin 已提交
86
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
M
MissPenguin 已提交
87 88
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
M
MissPenguin 已提交
89 90
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
M
MissPenguin 已提交
91 92
                   FLAGS_use_tensorrt, FLAGS_precision);
    
M
MissPenguin 已提交
93 94 95 96 97 98 99 100 101
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
M
MissPenguin 已提交
102
      std::vector<double> det_times;
M
MissPenguin 已提交
103

M
MissPenguin 已提交
104 105 106 107 108
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
M
MissPenguin 已提交
109 110
    }
    
M
MissPenguin 已提交
111
    if (FLAGS_benchmark) {
M
MissPenguin 已提交
112 113 114 115 116 117 118 119 120 121 122
        AutoLogger autolog("ocr_det", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
M
MissPenguin 已提交
123
    }
M
MissPenguin 已提交
124 125 126 127
    return 0;
}


M
MissPenguin 已提交
128 129
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
M
MissPenguin 已提交
130
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
M
MissPenguin 已提交
131 132
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
M
MissPenguin 已提交
133
                       FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
134 135 136 137 138 139 140 141 142 143

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

M
MissPenguin 已提交
144 145
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
M
MissPenguin 已提交
146
        
M
MissPenguin 已提交
147 148 149 150 151
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
    
M
MissPenguin 已提交
152 153 154 155
    return 0;
}


M
MissPenguin 已提交
156
int main_system(std::vector<cv::String> cv_all_img_names) {
M
MissPenguin 已提交
157
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
M
MissPenguin 已提交
158 159
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
M
MissPenguin 已提交
160 161
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
M
MissPenguin 已提交
162
                   FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
163 164 165 166

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
M
MissPenguin 已提交
167 168
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
M
MissPenguin 已提交
169
                           FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
170 171 172
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
M
MissPenguin 已提交
173 174
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
M
MissPenguin 已提交
175
                       FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
176 177 178 179 180 181

    auto start = std::chrono::system_clock::now();

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

D
Double_V 已提交
182
      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
M
MissPenguin 已提交
183 184 185 186 187
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
M
MissPenguin 已提交
188 189 190 191
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
M
MissPenguin 已提交
192 193 194
    
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
M
MissPenguin 已提交
195
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
M
MissPenguin 已提交
196 197 198 199

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
M
MissPenguin 已提交
200
        rec.Run(crop_img, &rec_times);
M
MissPenguin 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      }
        
      auto end = std::chrono::system_clock::now();
      auto duration =
          std::chrono::duration_cast<std::chrono::microseconds>(end - start);
      std::cout << "Cost  "
                << double(duration.count()) *
                       std::chrono::microseconds::period::num /
                       std::chrono::microseconds::period::den
                << "s" << std::endl;
    }
      
    return 0;
}


M
MissPenguin 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


M
MissPenguin 已提交
253
int main(int argc, char **argv) {
M
MissPenguin 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
M
MissPenguin 已提交
268
    
M
MissPenguin 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

M
MissPenguin 已提交
283
}