Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
7d53da94
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7d53da94
编写于
8月 11, 2021
作者:
M
MissPenguin
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge all
上级
874a3262
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
346 addition
and
631 deletion
+346
-631
deploy/cpp_infer/CMakeLists.txt
deploy/cpp_infer/CMakeLists.txt
+3
-3
deploy/cpp_infer/include/clipper.h
deploy/cpp_infer/include/clipper.h
+2
-0
deploy/cpp_infer/include/ocr_cls.h
deploy/cpp_infer/include/ocr_cls.h
+2
-0
deploy/cpp_infer/include/ocr_rec.h
deploy/cpp_infer/include/ocr_rec.h
+2
-0
deploy/cpp_infer/src/main.cpp
deploy/cpp_infer/src/main.cpp
+336
-0
deploy/cpp_infer/src/ocr_cls.cpp
deploy/cpp_infer/src/ocr_cls.cpp
+0
-0
deploy/cpp_infer/src/ocr_det.cpp
deploy/cpp_infer/src/ocr_det.cpp
+1
-2
deploy/cpp_infer/src/ocr_rec.cpp
deploy/cpp_infer/src/ocr_rec.cpp
+0
-0
deploy/cpp_infer/src/postprocess_op.cpp
deploy/cpp_infer/src/postprocess_op.cpp
+0
-0
deploy/cpp_infer/src/preprocess_op.cpp
deploy/cpp_infer/src/preprocess_op.cpp
+0
-0
deploy/cpp_infer/src_det/main.cpp
deploy/cpp_infer/src_det/main.cpp
+0
-120
deploy/cpp_infer/src_det/ocr_det.cpp
deploy/cpp_infer/src_det/ocr_det.cpp
+0
-163
deploy/cpp_infer/src_rec/main.cpp
deploy/cpp_infer/src_rec/main.cpp
+0
-112
deploy/cpp_infer/src_rec/ocr_rec.cpp
deploy/cpp_infer/src_rec/ocr_rec.cpp
+0
-185
deploy/cpp_infer/tools/build.sh
deploy/cpp_infer/tools/build.sh
+0
-13
deploy/cpp_infer/tools/config.txt
deploy/cpp_infer/tools/config.txt
+0
-31
deploy/cpp_infer/tools/run.sh
deploy/cpp_infer/tools/run.sh
+0
-2
未找到文件。
deploy/cpp_infer/CMakeLists.txt
浏览文件 @
7d53da94
project
(
ocr_system
CXX C
)
project
(
ppocr
CXX C
)
option
(
WITH_MKL
"Compile demo with MKL/OpenBlas support, default use MKL."
ON
)
option
(
WITH_GPU
"Compile demo with GPU/CPU, default use CPU."
OFF
)
...
...
@@ -11,7 +11,7 @@ SET(CUDA_LIB "" CACHE PATH "Location of libraries")
SET
(
CUDNN_LIB
""
CACHE PATH
"Location of libraries"
)
SET
(
TENSORRT_DIR
""
CACHE PATH
"Compile demo with TensorRT"
)
set
(
DEMO_NAME
"
ocr_system
"
)
set
(
DEMO_NAME
"
ppocr
"
)
macro
(
safe_set_static_flag
)
...
...
@@ -206,7 +206,7 @@ endif()
set
(
DEPS
${
DEPS
}
${
OpenCV_LIBS
}
)
AUX_SOURCE_DIRECTORY
(
./src
_system
SRCS
)
AUX_SOURCE_DIRECTORY
(
./src SRCS
)
add_executable
(
${
DEMO_NAME
}
${
SRCS
}
)
target_link_libraries
(
${
DEMO_NAME
}
${
DEPS
}
)
...
...
deploy/cpp_infer/include/clipper.h
浏览文件 @
7d53da94
...
...
@@ -31,6 +31,8 @@
* *
*******************************************************************************/
#pragma once
#ifndef clipper_hpp
#define clipper_hpp
...
...
deploy/cpp_infer/include/ocr_cls.h
浏览文件 @
7d53da94
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
...
...
deploy/cpp_infer/include/ocr_rec.h
浏览文件 @
7d53da94
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
...
...
deploy/cpp_infer/src
_system
/main.cpp
→
deploy/cpp_infer/src/main.cpp
浏览文件 @
7d53da94
...
...
@@ -29,6 +29,7 @@
#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
#include <sys/stat.h>
...
...
@@ -39,7 +40,9 @@ DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32
(
gpu_mem
,
4000
,
"GPU id when infering with GPU."
);
DEFINE_int32
(
cpu_math_library_num_threads
,
10
,
"Num of threads with CPU."
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Whether use mkldnn with CPU."
);
DEFINE_bool
(
use_tensorrt
,
false
,
"Whether use tensorrt."
);
DEFINE_bool
(
use_fp16
,
false
,
"Whether use fp16 when use tensorrt."
);
// detection related
DEFINE_string
(
image_dir
,
""
,
"Dir of input image."
);
DEFINE_string
(
det_model_dir
,
""
,
"Path of det inference model."
);
DEFINE_int32
(
max_side_len
,
960
,
"max_side_len of input image."
);
...
...
@@ -48,16 +51,14 @@ DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double
(
det_db_unclip_ratio
,
1.6
,
"Threshold of det_db_unclip_ratio."
);
DEFINE_bool
(
use_polygon_score
,
false
,
"Whether use polygon score."
);
DEFINE_bool
(
visualize
,
true
,
"Whether show the detection results."
);
// classification related
DEFINE_bool
(
use_angle_cls
,
false
,
"Whether use use_angle_cls."
);
DEFINE_string
(
cls_model_dir
,
""
,
"Path of cls inference model."
);
DEFINE_double
(
cls_thresh
,
0.9
,
"Threshold of cls_thresh."
);
// recognition related
DEFINE_string
(
rec_model_dir
,
""
,
"Path of rec inference model."
);
DEFINE_string
(
char_list_file
,
"../../ppocr/utils/ppocr_keys_v1.txt"
,
"Path of dictionary."
);
DEFINE_bool
(
use_tensorrt
,
false
,
"Whether use tensorrt."
);
DEFINE_bool
(
use_fp16
,
false
,
"Whether use fp16 when use tensorrt."
);
using
namespace
std
;
using
namespace
cv
;
...
...
@@ -131,83 +132,205 @@ cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
}
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
((
FLAGS_det_model_dir
.
empty
()
||
FLAGS_rec_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
||
(
FLAGS_use_angle_cls
&&
FLAGS_cls_model_dir
.
empty
()))
{
std
::
cout
<<
"Usage[default]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<<
"--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
std
::
cout
<<
"Usage[use angle cls]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<<
"--use_angle_cls=true "
<<
"--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<<
"--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
return
-
1
;
}
int
main_det
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_det_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
{
std
::
cout
<<
"Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
exit
(
1
);
}
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
DBDetector
det
(
FLAGS_det_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_max_side_len
,
FLAGS_det_db_thresh
,
FLAGS_det_db_box_thresh
,
FLAGS_det_db_unclip_ratio
,
FLAGS_use_polygon_score
,
FLAGS_visualize
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
auto
start
=
std
::
chrono
::
system_clock
::
now
();
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
cv_all_img_names
[
i
],
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
det
.
Run
(
srcimg
,
boxes
);
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
return
0
;
}
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
DBDetector
det
(
FLAGS_det_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_max_side_len
,
FLAGS_det_db_thresh
,
FLAGS_det_db_box_thresh
,
FLAGS_det_db_unclip_ratio
,
FLAGS_use_polygon_score
,
FLAGS_visualize
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
Classifier
*
cls
=
nullptr
;
if
(
FLAGS_use_angle_cls
)
{
cls
=
new
Classifier
(
FLAGS_cls_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_cls_thresh
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
}
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
int
main_rec
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_rec_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
{
std
::
cout
<<
"Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
exit
(
1
);
}
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
auto
start
=
std
::
chrono
::
system_clock
::
now
();
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
cv_all_img_names
[
i
],
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
auto
start
=
std
::
chrono
::
system_clock
::
now
();
rec
.
Run
(
srcimg
);
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
return
0
;
}
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
FLAGS_image_dir
,
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
int
main_system
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
((
FLAGS_det_model_dir
.
empty
()
||
FLAGS_rec_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
||
(
FLAGS_use_angle_cls
&&
FLAGS_cls_model_dir
.
empty
()))
{
std
::
cout
<<
"Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<<
"--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
std
::
cout
<<
"Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<<
"--use_angle_cls=true "
<<
"--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<<
"--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
exit
(
1
);
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
DBDetector
det
(
FLAGS_det_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_max_side_len
,
FLAGS_det_db_thresh
,
FLAGS_det_db_box_thresh
,
FLAGS_det_db_unclip_ratio
,
FLAGS_use_polygon_score
,
FLAGS_visualize
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
Classifier
*
cls
=
nullptr
;
if
(
FLAGS_use_angle_cls
)
{
cls
=
new
Classifier
(
FLAGS_cls_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_cls_thresh
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
}
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
auto
start
=
std
::
chrono
::
system_clock
::
now
();
det
.
Run
(
srcimg
,
boxes
);
cv
::
Mat
crop_img
;
for
(
int
j
=
0
;
j
<
boxes
.
size
();
j
++
)
{
crop_img
=
GetRotateCropImage
(
srcimg
,
boxes
[
j
]);
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
if
(
cls
!=
nullptr
)
{
crop_img
=
cls
->
Run
(
crop_img
);
cv
::
Mat
srcimg
=
cv
::
imread
(
FLAGS_image_dir
,
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
rec
.
Run
(
crop_img
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
det
.
Run
(
srcimg
,
boxes
);
cv
::
Mat
crop_img
;
for
(
int
j
=
0
;
j
<
boxes
.
size
();
j
++
)
{
crop_img
=
GetRotateCropImage
(
srcimg
,
boxes
[
j
]);
if
(
cls
!=
nullptr
)
{
crop_img
=
cls
->
Run
(
crop_img
);
}
rec
.
Run
(
crop_img
);
}
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
return
0
;
}
return
0
;
int
main
(
int
argc
,
char
**
argv
)
{
if
(
strcmp
(
argv
[
1
],
"det"
)
!=
0
&&
strcmp
(
argv
[
1
],
"rec"
)
!=
0
&&
strcmp
(
argv
[
1
],
"system"
)
!=
0
)
{
std
::
cout
<<
"Please choose one mode of [det, rec, system] !"
<<
std
::
endl
;
return
-
1
;
}
std
::
cout
<<
"mode: "
<<
argv
[
1
]
<<
endl
;
if
(
strcmp
(
argv
[
1
],
"det"
)
==
0
)
{
return
main_det
(
argc
,
argv
);
}
if
(
strcmp
(
argv
[
1
],
"rec"
)
==
0
)
{
return
main_rec
(
argc
,
argv
);
}
if
(
strcmp
(
argv
[
1
],
"system"
)
==
0
)
{
return
main_system
(
argc
,
argv
);
}
// return 0;
}
deploy/cpp_infer/src
_system
/ocr_cls.cpp
→
deploy/cpp_infer/src/ocr_cls.cpp
浏览文件 @
7d53da94
文件已移动
deploy/cpp_infer/src
_system
/ocr_det.cpp
→
deploy/cpp_infer/src/ocr_det.cpp
浏览文件 @
7d53da94
...
...
@@ -13,8 +13,7 @@
// limitations under the License.
#include <include/ocr_det.h>
#include <include/preprocess_op.cpp>
#include <include/postprocess_op.cpp>
namespace
PaddleOCR
{
...
...
deploy/cpp_infer/src
_system
/ocr_rec.cpp
→
deploy/cpp_infer/src/ocr_rec.cpp
浏览文件 @
7d53da94
文件已移动
deploy/cpp_infer/
include
/postprocess_op.cpp
→
deploy/cpp_infer/
src
/postprocess_op.cpp
浏览文件 @
7d53da94
文件已移动
deploy/cpp_infer/
include
/preprocess_op.cpp
→
deploy/cpp_infer/
src
/preprocess_op.cpp
浏览文件 @
7d53da94
文件已移动
deploy/cpp_infer/src_det/main.cpp
已删除
100644 → 0
浏览文件 @
874a3262
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <glog/logging.h>
#include <include/ocr_det.h>
#include <sys/stat.h>
#include <gflags/gflags.h>
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU."
);
DEFINE_int32
(
gpu_id
,
0
,
"Device id of GPU to execute."
);
DEFINE_int32
(
gpu_mem
,
4000
,
"GPU id when infering with GPU."
);
DEFINE_int32
(
cpu_math_library_num_threads
,
10
,
"Num of threads with CPU."
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Whether use mkldnn with CPU."
);
DEFINE_string
(
image_dir
,
""
,
"Dir of input image."
);
DEFINE_string
(
det_model_dir
,
""
,
"Path of det inference model."
);
DEFINE_int32
(
max_side_len
,
960
,
"max_side_len of input image."
);
DEFINE_double
(
det_db_thresh
,
0.3
,
"Threshold of det_db_thresh."
);
DEFINE_double
(
det_db_box_thresh
,
0.5
,
"Threshold of det_db_box_thresh."
);
DEFINE_double
(
det_db_unclip_ratio
,
1.6
,
"Threshold of det_db_unclip_ratio."
);
DEFINE_bool
(
use_polygon_score
,
false
,
"Whether use polygon score."
);
DEFINE_bool
(
visualize
,
true
,
"Whether show the detection results."
);
DEFINE_bool
(
use_tensorrt
,
false
,
"Whether use tensorrt."
);
DEFINE_bool
(
use_fp16
,
false
,
"Whether use fp16 when use tensorrt."
);
using
namespace
std
;
using
namespace
cv
;
using
namespace
PaddleOCR
;
static
bool
PathExists
(
const
std
::
string
&
path
){
#ifdef _WIN32
struct
_stat
buffer
;
return
(
_stat
(
path
.
c_str
(),
&
buffer
)
==
0
);
#else
struct
stat
buffer
;
return
(
stat
(
path
.
c_str
(),
&
buffer
)
==
0
);
#endif // !_WIN32
}
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_det_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
{
std
::
cout
<<
"Usage: ./ocr_det --det_model_dir=/PATH/TO/INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
return
-
1
;
}
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
DBDetector
det
(
FLAGS_det_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_max_side_len
,
FLAGS_det_db_thresh
,
FLAGS_det_db_box_thresh
,
FLAGS_det_db_unclip_ratio
,
FLAGS_use_polygon_score
,
FLAGS_visualize
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
auto
start
=
std
::
chrono
::
system_clock
::
now
();
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
cv_all_img_names
[
i
],
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
det
.
Run
(
srcimg
,
boxes
);
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
return
0
;
}
deploy/cpp_infer/src_det/ocr_det.cpp
已删除
100644 → 0
浏览文件 @
874a3262
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_det.h>
#include <include/preprocess_op.cpp>
#include <include/postprocess_op.cpp>
namespace
PaddleOCR
{
void
DBDetector
::
LoadModel
(
const
std
::
string
&
model_dir
)
{
// AnalysisConfig config;
paddle_infer
::
Config
config
;
config
.
SetModel
(
model_dir
+
"/inference.pdmodel"
,
model_dir
+
"/inference.pdiparams"
);
if
(
this
->
use_gpu_
)
{
config
.
EnableUseGpu
(
this
->
gpu_mem_
,
this
->
gpu_id_
);
if
(
this
->
use_tensorrt_
)
{
config
.
EnableTensorRtEngine
(
1
<<
20
,
10
,
3
,
this
->
use_fp16_
?
paddle_infer
::
Config
::
Precision
::
kHalf
:
paddle_infer
::
Config
::
Precision
::
kFloat32
,
false
,
false
);
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"x"
,
{
1
,
3
,
50
,
50
}},
{
"conv2d_92.tmp_0"
,
{
1
,
96
,
20
,
20
}},
{
"conv2d_91.tmp_0"
,
{
1
,
96
,
10
,
10
}},
{
"nearest_interp_v2_1.tmp_0"
,
{
1
,
96
,
10
,
10
}},
{
"nearest_interp_v2_2.tmp_0"
,
{
1
,
96
,
20
,
20
}},
{
"nearest_interp_v2_3.tmp_0"
,
{
1
,
24
,
20
,
20
}},
{
"nearest_interp_v2_4.tmp_0"
,
{
1
,
24
,
20
,
20
}},
{
"nearest_interp_v2_5.tmp_0"
,
{
1
,
24
,
20
,
20
}},
{
"elementwise_add_7"
,
{
1
,
56
,
2
,
2
}},
{
"nearest_interp_v2_0.tmp_0"
,
{
1
,
96
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"x"
,
{
1
,
3
,
this
->
max_side_len_
,
this
->
max_side_len_
}},
{
"conv2d_92.tmp_0"
,
{
1
,
96
,
400
,
400
}},
{
"conv2d_91.tmp_0"
,
{
1
,
96
,
200
,
200
}},
{
"nearest_interp_v2_1.tmp_0"
,
{
1
,
96
,
200
,
200
}},
{
"nearest_interp_v2_2.tmp_0"
,
{
1
,
96
,
400
,
400
}},
{
"nearest_interp_v2_3.tmp_0"
,
{
1
,
24
,
400
,
400
}},
{
"nearest_interp_v2_4.tmp_0"
,
{
1
,
24
,
400
,
400
}},
{
"nearest_interp_v2_5.tmp_0"
,
{
1
,
24
,
400
,
400
}},
{
"elementwise_add_7"
,
{
1
,
56
,
400
,
400
}},
{
"nearest_interp_v2_0.tmp_0"
,
{
1
,
96
,
400
,
400
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"x"
,
{
1
,
3
,
640
,
640
}},
{
"conv2d_92.tmp_0"
,
{
1
,
96
,
160
,
160
}},
{
"conv2d_91.tmp_0"
,
{
1
,
96
,
80
,
80
}},
{
"nearest_interp_v2_1.tmp_0"
,
{
1
,
96
,
80
,
80
}},
{
"nearest_interp_v2_2.tmp_0"
,
{
1
,
96
,
160
,
160
}},
{
"nearest_interp_v2_3.tmp_0"
,
{
1
,
24
,
160
,
160
}},
{
"nearest_interp_v2_4.tmp_0"
,
{
1
,
24
,
160
,
160
}},
{
"nearest_interp_v2_5.tmp_0"
,
{
1
,
24
,
160
,
160
}},
{
"elementwise_add_7"
,
{
1
,
56
,
40
,
40
}},
{
"nearest_interp_v2_0.tmp_0"
,
{
1
,
96
,
40
,
40
}}};
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
}
}
else
{
config
.
DisableGpu
();
if
(
this
->
use_mkldnn_
)
{
config
.
EnableMKLDNN
();
// cache 10 different shapes for mkldnn to avoid memory leak
config
.
SetMkldnnCacheCapacity
(
10
);
}
config
.
SetCpuMathLibraryNumThreads
(
this
->
cpu_math_library_num_threads_
);
}
// use zero_copy_run as default
config
.
SwitchUseFeedFetchOps
(
false
);
// true for multiple input
config
.
SwitchSpecifyInputNames
(
true
);
config
.
SwitchIrOptim
(
true
);
config
.
EnableMemoryOptim
();
// config.DisableGlogInfo();
this
->
predictor_
=
CreatePredictor
(
config
);
}
void
DBDetector
::
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
)
{
float
ratio_h
{};
float
ratio_w
{};
cv
::
Mat
srcimg
;
cv
::
Mat
resize_img
;
img
.
copyTo
(
srcimg
);
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
max_side_len_
,
ratio_h
,
ratio_w
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
// Inference.
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputHandle
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
input_t
->
CopyFromCpu
(
input
.
data
());
this
->
predictor_
->
Run
();
std
::
vector
<
float
>
out_data
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
out_data
.
resize
(
out_num
);
output_t
->
CopyToCpu
(
out_data
.
data
());
int
n2
=
output_shape
[
2
];
int
n3
=
output_shape
[
3
];
int
n
=
n2
*
n3
;
std
::
vector
<
float
>
pred
(
n
,
0.0
);
std
::
vector
<
unsigned
char
>
cbuf
(
n
,
' '
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
pred
[
i
]
=
float
(
out_data
[
i
]);
cbuf
[
i
]
=
(
unsigned
char
)((
out_data
[
i
])
*
255
);
}
cv
::
Mat
cbuf_map
(
n2
,
n3
,
CV_8UC1
,
(
unsigned
char
*
)
cbuf
.
data
());
cv
::
Mat
pred_map
(
n2
,
n3
,
CV_32F
,
(
float
*
)
pred
.
data
());
const
double
threshold
=
this
->
det_db_thresh_
*
255
;
const
double
maxvalue
=
255
;
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
cv
::
Mat
dilation_map
;
cv
::
Mat
dila_ele
=
cv
::
getStructuringElement
(
cv
::
MORPH_RECT
,
cv
::
Size
(
2
,
2
));
cv
::
dilate
(
bit_map
,
dilation_map
,
dila_ele
);
boxes
=
post_processor_
.
BoxesFromBitmap
(
pred_map
,
dilation_map
,
this
->
det_db_box_thresh_
,
this
->
det_db_unclip_ratio_
,
this
->
use_polygon_score_
);
boxes
=
post_processor_
.
FilterTagDetRes
(
boxes
,
ratio_h
,
ratio_w
,
srcimg
);
std
::
cout
<<
"Detected boxes num: "
<<
boxes
.
size
()
<<
endl
;
//// visualization
if
(
this
->
visualize_
)
{
Utility
::
VisualizeBboxes
(
srcimg
,
boxes
);
}
}
}
// namespace PaddleOCR
deploy/cpp_infer/src_rec/main.cpp
已删除
100644 → 0
浏览文件 @
874a3262
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <glog/logging.h>
#include <include/ocr_rec.h>
#include <sys/stat.h>
#include <gflags/gflags.h>
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU."
);
DEFINE_int32
(
gpu_id
,
0
,
"Device id of GPU to execute."
);
DEFINE_int32
(
gpu_mem
,
4000
,
"GPU id when infering with GPU."
);
DEFINE_int32
(
cpu_math_library_num_threads
,
10
,
"Num of threads with CPU."
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Whether use mkldnn with CPU."
);
DEFINE_string
(
image_dir
,
""
,
"Dir of input image."
);
DEFINE_string
(
rec_model_dir
,
""
,
"Path of rec inference model."
);
DEFINE_string
(
char_list_file
,
"../../ppocr/utils/ppocr_keys_v1.txt"
,
"Path of dictionary."
);
DEFINE_bool
(
use_tensorrt
,
false
,
"Whether use tensorrt."
);
DEFINE_bool
(
use_fp16
,
false
,
"Whether use fp16 when use tensorrt."
);
using
namespace
std
;
using
namespace
cv
;
using
namespace
PaddleOCR
;
static
bool
PathExists
(
const
std
::
string
&
path
){
#ifdef _WIN32
struct
_stat
buffer
;
return
(
_stat
(
path
.
c_str
(),
&
buffer
)
==
0
);
#else
struct
stat
buffer
;
return
(
stat
(
path
.
c_str
(),
&
buffer
)
==
0
);
#endif // !_WIN32
}
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_rec_model_dir
.
empty
()
||
FLAGS_image_dir
.
empty
())
{
std
::
cout
<<
"Usage: ./ocr_rec --rec_model_dir=/PATH/TO/INFERENCE_MODEL/ "
<<
"--image_dir=/PATH/TO/INPUT/IMAGE/"
<<
std
::
endl
;
return
-
1
;
}
if
(
!
PathExists
(
FLAGS_image_dir
))
{
std
::
cerr
<<
"[ERROR] image path not exist! image_dir: "
<<
FLAGS_image_dir
<<
endl
;
exit
(
1
);
}
std
::
vector
<
cv
::
String
>
cv_all_img_names
;
cv
::
glob
(
FLAGS_image_dir
,
cv_all_img_names
);
std
::
cout
<<
"total images num: "
<<
cv_all_img_names
.
size
()
<<
endl
;
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_math_library_num_threads
,
FLAGS_use_mkldnn
,
FLAGS_char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_use_fp16
);
auto
start
=
std
::
chrono
::
system_clock
::
now
();
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
cv
::
Mat
srcimg
=
cv
::
imread
(
cv_all_img_names
[
i
],
cv
::
IMREAD_COLOR
);
if
(
!
srcimg
.
data
)
{
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
rec
.
Run
(
srcimg
);
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"Cost "
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"s"
<<
std
::
endl
;
}
return
0
;
}
deploy/cpp_infer/src_rec/ocr_rec.cpp
已删除
100644 → 0
浏览文件 @
874a3262
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_rec.h>
#include <include/preprocess_op.cpp>
namespace
PaddleOCR
{
void
CRNNRecognizer
::
Run
(
cv
::
Mat
&
img
)
{
cv
::
Mat
srcimg
;
img
.
copyTo
(
srcimg
);
cv
::
Mat
resize_img
;
float
wh_ratio
=
float
(
srcimg
.
cols
)
/
float
(
srcimg
.
rows
);
this
->
resize_op_
.
Run
(
srcimg
,
resize_img
,
wh_ratio
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
// Inference.
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputHandle
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
input_t
->
CopyFromCpu
(
input
.
data
());
this
->
predictor_
->
Run
();
std
::
vector
<
float
>
predict_batch
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
auto
predict_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
predict_shape
.
begin
(),
predict_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
predict_batch
.
resize
(
out_num
);
output_t
->
CopyToCpu
(
predict_batch
.
data
());
// ctc decode
std
::
vector
<
std
::
string
>
str_res
;
int
argmax_idx
;
int
last_index
=
0
;
float
score
=
0.
f
;
int
count
=
0
;
float
max_value
=
0.0
f
;
for
(
int
n
=
0
;
n
<
predict_shape
[
1
];
n
++
)
{
argmax_idx
=
int
(
Utility
::
argmax
(
&
predict_batch
[
n
*
predict_shape
[
2
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
2
]]));
max_value
=
float
(
*
std
::
max_element
(
&
predict_batch
[
n
*
predict_shape
[
2
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
2
]]));
if
(
argmax_idx
>
0
&&
(
!
(
n
>
0
&&
argmax_idx
==
last_index
)))
{
score
+=
max_value
;
count
+=
1
;
str_res
.
push_back
(
label_list_
[
argmax_idx
]);
}
last_index
=
argmax_idx
;
}
score
/=
count
;
for
(
int
i
=
0
;
i
<
str_res
.
size
();
i
++
)
{
std
::
cout
<<
str_res
[
i
];
}
std
::
cout
<<
"
\t
score: "
<<
score
<<
std
::
endl
;
}
void
CRNNRecognizer
::
LoadModel
(
const
std
::
string
&
model_dir
)
{
// AnalysisConfig config;
paddle_infer
::
Config
config
;
config
.
SetModel
(
model_dir
+
"/inference.pdmodel"
,
model_dir
+
"/inference.pdiparams"
);
if
(
this
->
use_gpu_
)
{
config
.
EnableUseGpu
(
this
->
gpu_mem_
,
this
->
gpu_id_
);
if
(
this
->
use_tensorrt_
)
{
config
.
EnableTensorRtEngine
(
1
<<
20
,
10
,
3
,
this
->
use_fp16_
?
paddle_infer
::
Config
::
Precision
::
kHalf
:
paddle_infer
::
Config
::
Precision
::
kFloat32
,
false
,
false
);
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"x"
,
{
1
,
3
,
32
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"x"
,
{
1
,
3
,
32
,
2000
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"x"
,
{
1
,
3
,
32
,
320
}}};
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
}
}
else
{
config
.
DisableGpu
();
if
(
this
->
use_mkldnn_
)
{
config
.
EnableMKLDNN
();
// cache 10 different shapes for mkldnn to avoid memory leak
config
.
SetMkldnnCacheCapacity
(
10
);
}
config
.
SetCpuMathLibraryNumThreads
(
this
->
cpu_math_library_num_threads_
);
}
config
.
SwitchUseFeedFetchOps
(
false
);
// true for multiple input
config
.
SwitchSpecifyInputNames
(
true
);
config
.
SwitchIrOptim
(
true
);
config
.
EnableMemoryOptim
();
config
.
DisableGlogInfo
();
this
->
predictor_
=
CreatePredictor
(
config
);
}
cv
::
Mat
CRNNRecognizer
::
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
)
{
cv
::
Mat
image
;
srcimage
.
copyTo
(
image
);
std
::
vector
<
std
::
vector
<
int
>>
points
=
box
;
int
x_collect
[
4
]
=
{
box
[
0
][
0
],
box
[
1
][
0
],
box
[
2
][
0
],
box
[
3
][
0
]};
int
y_collect
[
4
]
=
{
box
[
0
][
1
],
box
[
1
][
1
],
box
[
2
][
1
],
box
[
3
][
1
]};
int
left
=
int
(
*
std
::
min_element
(
x_collect
,
x_collect
+
4
));
int
right
=
int
(
*
std
::
max_element
(
x_collect
,
x_collect
+
4
));
int
top
=
int
(
*
std
::
min_element
(
y_collect
,
y_collect
+
4
));
int
bottom
=
int
(
*
std
::
max_element
(
y_collect
,
y_collect
+
4
));
cv
::
Mat
img_crop
;
image
(
cv
::
Rect
(
left
,
top
,
right
-
left
,
bottom
-
top
)).
copyTo
(
img_crop
);
for
(
int
i
=
0
;
i
<
points
.
size
();
i
++
)
{
points
[
i
][
0
]
-=
left
;
points
[
i
][
1
]
-=
top
;
}
int
img_crop_width
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
1
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
1
][
1
],
2
)));
int
img_crop_height
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
3
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
3
][
1
],
2
)));
cv
::
Point2f
pts_std
[
4
];
pts_std
[
0
]
=
cv
::
Point2f
(
0.
,
0.
);
pts_std
[
1
]
=
cv
::
Point2f
(
img_crop_width
,
0.
);
pts_std
[
2
]
=
cv
::
Point2f
(
img_crop_width
,
img_crop_height
);
pts_std
[
3
]
=
cv
::
Point2f
(
0.
f
,
img_crop_height
);
cv
::
Point2f
pointsf
[
4
];
pointsf
[
0
]
=
cv
::
Point2f
(
points
[
0
][
0
],
points
[
0
][
1
]);
pointsf
[
1
]
=
cv
::
Point2f
(
points
[
1
][
0
],
points
[
1
][
1
]);
pointsf
[
2
]
=
cv
::
Point2f
(
points
[
2
][
0
],
points
[
2
][
1
]);
pointsf
[
3
]
=
cv
::
Point2f
(
points
[
3
][
0
],
points
[
3
][
1
]);
cv
::
Mat
M
=
cv
::
getPerspectiveTransform
(
pointsf
,
pts_std
);
cv
::
Mat
dst_img
;
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
Size
(
img_crop_width
,
img_crop_height
),
cv
::
BORDER_REPLICATE
);
if
(
float
(
dst_img
.
rows
)
>=
float
(
dst_img
.
cols
)
*
1.5
)
{
cv
::
Mat
srcCopy
=
cv
::
Mat
(
dst_img
.
rows
,
dst_img
.
cols
,
dst_img
.
depth
());
cv
::
transpose
(
dst_img
,
srcCopy
);
cv
::
flip
(
srcCopy
,
srcCopy
,
0
);
return
srcCopy
;
}
else
{
return
dst_img
;
}
}
}
// namespace PaddleOCR
deploy/cpp_infer/tools/build.sh
浏览文件 @
7d53da94
set
-o
errexit
if
[
$#
!=
1
]
;
then
echo
"USAGE:
$0
MODE (one of ['det', 'rec', 'system'])"
echo
" e.g.:
$0
system"
exit
1
;
fi
# MODE be one of ['det', 'rec', 'system']
MODE
=
$1
cp
CMakeLists_
$MODE
.txt CMakeLists.txt
OPENCV_DIR
=
/paddle/git/new/PaddleOCR/deploy/cpp_infer/opencv-3.4.7/opencv3/
LIB_DIR
=
/paddle/git/new/PaddleOCR/deploy/cpp_infer/paddle_inference/
CUDA_LIB_DIR
=
/usr/local/cuda/lib64/
...
...
deploy/cpp_infer/tools/config.txt
已删除
100644 → 0
浏览文件 @
874a3262
# model load config
use_gpu 0
gpu_id 0
gpu_mem 4000
cpu_math_library_num_threads 10
use_mkldnn 0
# det config
max_side_len 960
det_db_thresh 0.3
det_db_box_thresh 0.5
det_db_unclip_ratio 1.6
use_polygon_score 1
det_model_dir ./inference/ch_ppocr_mobile_v2.0_det_infer/
# cls config
use_angle_cls 0
cls_model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer/
cls_thresh 0.9
# rec config
rec_model_dir ./inference/ch_ppocr_mobile_v2.0_rec_infer/
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt
# show the detection results
visualize 0
# use_tensorrt
use_tensorrt 0
use_fp16 0
deploy/cpp_infer/tools/run.sh
已删除
100755 → 0
浏览文件 @
874a3262
./build/ocr_system ./tools/config.txt ../../doc/imgs/12.jpg
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录