pse_postprocess.py 4.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
W
WenmuZhou 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import paddle
from paddle.nn import functional as F

from ppocr.postprocess.pse_postprocess.pse import pse


class PSEPostProcess(object):
    """
    The post process for PSE.
    """

    def __init__(self,
                 thresh=0.5,
                 box_thresh=0.85,
                 min_area=16,
                 box_type='box',
                 scale=4,
                 **kwargs):
        assert box_type in ['box', 'poly'], 'Only box and poly is supported'
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.min_area = min_area
        self.box_type = box_type
        self.scale = scale

    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
        if not isinstance(pred, paddle.Tensor):
            pred = paddle.to_tensor(pred)
W
WenmuZhou 已提交
54 55
        pred = F.interpolate(
            pred, scale_factor=4 // self.scale, mode='bilinear')
W
WenmuZhou 已提交
56 57 58 59 60 61 62 63 64 65 66 67

        score = F.sigmoid(pred[:, 0, :, :])

        kernels = (pred > self.thresh).astype('float32')
        text_mask = kernels[:, 0, :, :]
        kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask

        score = score.numpy()
        kernels = kernels.numpy().astype(np.uint8)

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
W
WenmuZhou 已提交
68 69 70
            boxes, scores = self.boxes_from_bitmap(score[batch_index],
                                                   kernels[batch_index],
                                                   shape_list[batch_index])
W
WenmuZhou 已提交
71 72 73 74

            boxes_batch.append({'points': boxes, 'scores': scores})
        return boxes_batch

W
WenmuZhou 已提交
75
    def boxes_from_bitmap(self, score, kernels, shape):
W
WenmuZhou 已提交
76
        label = pse(kernels, self.min_area)
W
WenmuZhou 已提交
77
        return self.generate_box(score, label, shape)
W
WenmuZhou 已提交
78

W
WenmuZhou 已提交
79 80
    def generate_box(self, score, label, shape):
        src_h, src_w, ratio_h, ratio_w = shape
W
WenmuZhou 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        label_num = np.max(label) + 1

        boxes = []
        scores = []
        for i in range(1, label_num):
            ind = label == i
            points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]

            if points.shape[0] < self.min_area:
                label[ind] = 0
                continue

            score_i = np.mean(score[ind])
            if score_i < self.box_thresh:
                label[ind] = 0
                continue

            if self.box_type == 'box':
                rect = cv2.minAreaRect(points)
                bbox = cv2.boxPoints(rect)
            elif self.box_type == 'poly':
                box_height = np.max(points[:, 1]) + 10
                box_width = np.max(points[:, 0]) + 10

                mask = np.zeros((box_height, box_width), np.uint8)
                mask[points[:, 1], points[:, 0]] = 255

W
WenmuZhou 已提交
108 109
                contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
                                               cv2.CHAIN_APPROX_SIMPLE)
W
WenmuZhou 已提交
110 111 112 113
                bbox = np.squeeze(contours[0], 1)
            else:
                raise NotImplementedError

W
WenmuZhou 已提交
114 115
            bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
            bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
W
WenmuZhou 已提交
116 117 118
            boxes.append(bbox)
            scores.append(score_i)
        return boxes, scores