pse_postprocess.py 3.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import paddle
from paddle.nn import functional as F

from ppocr.postprocess.pse_postprocess.pse import pse


class PSEPostProcess(object):
    """
    The post process for PSE.
    """

    def __init__(self,
                 thresh=0.5,
                 box_thresh=0.85,
                 min_area=16,
                 box_type='box',
                 scale=4,
                 **kwargs):
        assert box_type in ['box', 'poly'], 'Only box and poly is supported'
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.min_area = min_area
        self.box_type = box_type
        self.scale = scale

    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
        if not isinstance(pred, paddle.Tensor):
            pred = paddle.to_tensor(pred)
        pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear')

        score = F.sigmoid(pred[:, 0, :, :])

        kernels = (pred > self.thresh).astype('float32')
        text_mask = kernels[:, 0, :, :]
        kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask

        score = score.numpy()
        kernels = kernels.numpy().astype(np.uint8)

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
W
WenmuZhou 已提交
63
            boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index])
W
WenmuZhou 已提交
64 65 66 67

            boxes_batch.append({'points': boxes, 'scores': scores})
        return boxes_batch

W
WenmuZhou 已提交
68
    def boxes_from_bitmap(self, score, kernels, shape):
W
WenmuZhou 已提交
69
        label = pse(kernels, self.min_area)
W
WenmuZhou 已提交
70
        return self.generate_box(score, label, shape)
W
WenmuZhou 已提交
71

W
WenmuZhou 已提交
72 73
    def generate_box(self, score, label, shape):
        src_h, src_w, ratio_h, ratio_w = shape
W
WenmuZhou 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        label_num = np.max(label) + 1

        boxes = []
        scores = []
        for i in range(1, label_num):
            ind = label == i
            points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]

            if points.shape[0] < self.min_area:
                label[ind] = 0
                continue

            score_i = np.mean(score[ind])
            if score_i < self.box_thresh:
                label[ind] = 0
                continue

            if self.box_type == 'box':
                rect = cv2.minAreaRect(points)
                bbox = cv2.boxPoints(rect)
            elif self.box_type == 'poly':
                box_height = np.max(points[:, 1]) + 10
                box_width = np.max(points[:, 0]) + 10

                mask = np.zeros((box_height, box_width), np.uint8)
                mask[points[:, 1], points[:, 0]] = 255

                contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                bbox = np.squeeze(contours[0], 1)
            else:
                raise NotImplementedError

            bbox[:, 0] = np.clip(
W
WenmuZhou 已提交
107
                np.round(bbox[:, 0] / ratio_w), 0, src_w)
W
WenmuZhou 已提交
108
            bbox[:, 1] = np.clip(
W
WenmuZhou 已提交
109
                np.round(bbox[:, 1] / ratio_h), 0, src_h)
W
WenmuZhou 已提交
110 111 112
            boxes.append(bbox)
            scores.append(score_i)
        return boxes, scores