infer_det.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

L
LDOUBLEV 已提交
21 22
import os
import sys
W
WenmuZhou 已提交
23

24
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
25
sys.path.append(__dir__)
26
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
27

L
LDOUBLEV 已提交
28
import cv2
W
WenmuZhou 已提交
29 30
import json
import paddle
31

W
WenmuZhou 已提交
32 33 34 35 36 37 38
from ppocr.utils.logging import get_logger
from ppocr.data import create_operators, transform
from ppocr.modeling import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import print_dict, get_image_file_list
import tools.program as program
39 40


L
LDOUBLEV 已提交
41
def draw_det_res(dt_boxes, config, img, img_name):
42 43
    if len(dt_boxes) > 0:
        import cv2
L
LDOUBLEV 已提交
44
        src_im = img
45 46 47
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
48
        save_det_path = os.path.dirname(config['Global'][
49 50 51
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
L
LDOUBLEV 已提交
52
        save_path = os.path.join(save_det_path, os.path.basename(img_name))
53 54 55 56 57
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


def main():
W
WenmuZhou 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'])

    # create data ops
    transforms = []
    for op in config['EVAL']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'keepKeys':
            op[op_name]['keep_keys'] = ['image', 'shape']
        transforms.append(op)

    ops = create_operators(transforms, global_config)
79 80

    save_res_path = config['Global']['save_res_path']
L
LDOUBLEV 已提交
81 82 83
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

W
WenmuZhou 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    model.eval()
    with open(save_res_path, "wb") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)

            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = paddle.to_variable(images)
            print(images.shape)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)
            boxes = post_result[0]['points']
            # write resule
            dt_boxes_json = []
            for box in boxes:
                tmp_json = {"transcription": ""}
                tmp_json['points'] = box.tolist()
                dt_boxes_json.append(tmp_json)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
            fout.write(otstr.encode())
            src_img = cv2.imread(file)
            draw_det_res(boxes, config, src_img, file)
110 111
    logger.info("success!")

W
WenmuZhou 已提交
112 113 114
    # save inference model
    # paddle.jit.save(model, 'output/model')

115 116

if __name__ == '__main__':
W
WenmuZhou 已提交
117 118 119 120 121
    place, config = program.preprocess()
    paddle.disable_static(place)

    logger = get_logger()
    print_dict(config, logger)
122
    main()