infer_det.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
from copy import deepcopy
import json

# from paddle.fluid.contrib.model_stat import summary


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
L
LDOUBLEV 已提交
37
# not take any effect.
38 39 40 41 42 43 44 45 46
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppocr.utils.utility import create_module
import program
from ppocr.utils.save_load import init_model
from ppocr.data.reader_main import reader_main
L
LDOUBLEV 已提交
47
import cv2
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

from ppocr.utils.utility import initial_logger
logger = initial_logger()


def draw_det_res(dt_boxes, config, img_name, ino):
    if len(dt_boxes) > 0:
        img_set_path = config['TestReader']['img_set_dir']
        img_path = img_set_path + img_name
        import cv2
        src_im = cv2.imread(img_path)
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        save_det_path = os.path.basename(config['Global'][
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
        save_path = os.path.join(save_det_path, "det_{}.jpg".format(img_name))
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, eval_outputs = det_model(mode="test")
            fetch_name_list = list(eval_outputs.keys())
            eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    # load checkpoints
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(eval_prog, path, exe)
        logger.info("Finish initing model from {}".format(path))
    else:
        raise Exception("{} not exists!".format(checkpoints))

    save_res_path = config['Global']['save_res_path']
    with open(save_res_path, "wb") as fout:
L
LDOUBLEV 已提交
107
        test_reader = reader_main(config=config, mode='test')
108 109 110 111 112 113 114 115 116 117 118 119
        tackling_num = 0
        for data in test_reader():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("tackling_num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
L
LDOUBLEV 已提交
120

121 122 123 124 125 126 127 128 129 130
            img_list = np.concatenate(img_list, axis=0)
            outs = exe.run(eval_prog,\
                feed={'image': img_list},\
                fetch_list=eval_fetch_list)

            global_params = config['Global']
            postprocess_params = deepcopy(config["PostProcess"])
            postprocess_params.update(global_params)
            postprocess = create_module(postprocess_params['function'])\
                (params=postprocess_params)
L
LDOUBLEV 已提交
131
            dt_boxes_list = postprocess({"maps": outs[0]}, ratio_list)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
                draw_det_res(dt_boxes, config, img_name, ino)

    logger.info("success!")


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()