utility.py 25.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25 26
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
27

L
LDOUBLEV 已提交
28

29 30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
31 32


W
WenmuZhou 已提交
33
def init_args():
L
LDOUBLEV 已提交
34
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
35
    # params for prediction engine
L
LDOUBLEV 已提交
36 37 38
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
39
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
40
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
41
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
42

W
WenmuZhou 已提交
43
    # params for text detector
L
LDOUBLEV 已提交
44 45 46
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
47 48
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
49

W
WenmuZhou 已提交
50
    # DB parmas
L
LDOUBLEV 已提交
51
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
52 53
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
54
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
56
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
57
    # EAST parmas
L
LDOUBLEV 已提交
58 59 60 61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
62
    # SAST parmas
L
licx 已提交
63 64
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
65
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
66

W
WenmuZhou 已提交
67 68 69 70
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
71
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
72 73
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
74 75 76 77 78 79 80
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
81
    # params for text recognizer
A
andyjpaddle 已提交
82
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
83
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
84
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
L
LDOUBLEV 已提交
85
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
86
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
87 88 89 90
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
91 92
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
93
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
94
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
95

J
Jethong 已提交
96 97 98 99 100 101 102 103 104
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
105
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
106
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
107
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
108

W
WenmuZhou 已提交
109 110 111 112 113
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
114
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
115 116 117
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
118
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
119
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
120 121 122 123 124 125 126
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
127

L
LDOUBLEV 已提交
128
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
129
    parser.add_argument("--use_mp", type=str2bool, default=False)
130 131
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
132

littletomatodonkey's avatar
littletomatodonkey 已提交
133
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
134
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
135

W
WenmuZhou 已提交
136
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
137
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
138
    return parser
W
WenmuZhou 已提交
139

140

141
def parse_args():
W
WenmuZhou 已提交
142
    parser = init_args()
L
LDOUBLEV 已提交
143 144 145
    return parser.parse_args()


W
WenmuZhou 已提交
146 147 148 149 150
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
151
    elif mode == 'rec':
W
WenmuZhou 已提交
152
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
153 154
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
155 156
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
157 158 159 160

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
161 162 163 164 165 166 167 168
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
169

L
LDOUBLEV 已提交
170
    else:
T
tink2123 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
189
        else:
T
tink2123 已提交
190 191 192 193 194
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
195
                logger.warning(
196
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
197 198 199 200
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
201
                    workspace_size=1 << 30,
T
tink2123 已提交
202 203 204 205
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
L
fix trt  
LDOUBLEV 已提交
206
            use_dynamic_shape = True
L
fix  
LDOUBLEV 已提交
207
            if mode == "det":
T
tink2123 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
L
fix trt  
LDOUBLEV 已提交
223
                    "x": [1, 3, 1536, 1536],
T
tink2123 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
A
andyjpaddle 已提交
272
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
L
fix trt  
LDOUBLEV 已提交
273
                    use_dynamic_shape = False
274 275
                imgH = int(args.rec_image_shape.split(',')[-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
A
andyjpaddle 已提交
276
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
277
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
T
tink2123 已提交
278 279
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
280
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
T
tink2123 已提交
281 282
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
L
fix trt  
LDOUBLEV 已提交
283 284
                use_dynamic_shape = False
            if use_dynamic_shape:
A
andyjpaddle 已提交
285 286
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
L
LDOUBLEV 已提交
287

L
LDOUBLEV 已提交
288
        else:
T
tink2123 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
305
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
306 307 308 309 310 311 312 313 314 315
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
316 317 318 319 320 321 322
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
323
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
324 325 326
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
327 328 329 330
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
331
    else:
T
tink2123 已提交
332 333 334
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
335
    return output_tensors
W
WenmuZhou 已提交
336 337


L
LDOUBLEV 已提交
338
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
339 340 341 342
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
343 344 345 346
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
347 348 349 350 351 352 353 354
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
371
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
372 373 374 375
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
376
    return src_im
L
LDOUBLEV 已提交
377 378


L
LDOUBLEV 已提交
379 380
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
381
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
382 383 384 385 386
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
387 388
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
389 390


W
WenmuZhou 已提交
391 392 393 394 395
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
396
             font_path="./doc/fonts/simfang.ttf"):
397 398 399
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
400
        image(Image|array): RGB image
401 402 403 404
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
405
        font_path: the path of font which is used to draw text
406 407 408
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
409 410
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
411 412 413 414
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
415
            continue
W
WenmuZhou 已提交
416
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
417
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
418
    if txts is not None:
L
LDOUBLEV 已提交
419
        img = np.array(resize_img(image, input_size=600))
420
        txt_img = text_visual(
W
WenmuZhou 已提交
421 422 423 424 425 426
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
427
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
428 429
        return img
    return image
430 431


W
WenmuZhou 已提交
432 433 434 435 436 437
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
438 439 440
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
441 442

    import random
L
LDOUBLEV 已提交
443

444 445 446
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
447 448 449
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
450 451
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
452
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
453 454 455 456 457 458 459 460 461 462
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
463 464
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
465
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
466 467 468
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
469 470
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
471 472 473
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
474
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
475 476
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
477 478 479 480
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
481 482 483
    return np.array(img_show)


484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
508 509 510 511 512 513
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
514 515 516 517 518 519 520
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
521
        font_path: the path of font which is used to draw text
522 523 524 525 526 527 528 529 530
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
531 532
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
533
        return blank_img, draw_txt
L
LDOUBLEV 已提交
534

535 536 537 538
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
539
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
540 541 542

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
543
    count, index = 1, 0
544 545
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
546
        if scores[idx] < threshold or math.isnan(scores[idx]):
547 548 549 550 551 552 553 554 555 556 557
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
558
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
559 560 561 562 563
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
564
            count += 1
565 566 567
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
568
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
569
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
570
        # whether add new blank img or not
L
LDOUBLEV 已提交
571
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
572 573 574
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
575
        count += 1
576 577 578 579 580 581
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
582 583


D
dyning 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
638 639 640 641 642 643
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
644
if __name__ == '__main__':
L
LDOUBLEV 已提交
645
    pass