test.sh 12.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
L
LDOUBLEV 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
L
LDOUBLEV 已提交
52 53
            #echo $(func_set_params "${mode}" "${value}")
            echo value
L
LDOUBLEV 已提交
54 55 56 57 58 59
            break
        fi
        IFS="|"
    done
    echo ${res}
}
L
LDOUBLEV 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
L
LDOUBLEV 已提交
76 77 78 79 80
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
L
LDOUBLEV 已提交
81
epoch_num=$(func_parser_params "${lines[6]}")
L
LDOUBLEV 已提交
82 83
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
L
LDOUBLEV 已提交
84
train_batch_value=$(func_parser_params "${lines[8]}")
L
LDOUBLEV 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
L
LDOUBLEV 已提交
103
trainer_key2=$(func_parser_key "${lines[20]}")
L
LDOUBLEV 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

inference_py=$(func_parser_value "${lines[36]}")
use_gpu_key=$(func_parser_key "${lines[37]}")
use_gpu_list=$(func_parser_value "${lines[37]}")
use_mkldnn_key=$(func_parser_key "${lines[38]}")
use_mkldnn_list=$(func_parser_value "${lines[38]}")
cpu_threads_key=$(func_parser_key "${lines[39]}")
cpu_threads_list=$(func_parser_value "${lines[39]}")
batch_size_key=$(func_parser_key "${lines[40]}")
batch_size_list=$(func_parser_value "${lines[40]}")
use_trt_key=$(func_parser_key "${lines[41]}")
use_trt_list=$(func_parser_value "${lines[41]}")
precision_key=$(func_parser_key "${lines[42]}")
precision_list=$(func_parser_value "${lines[42]}")
infer_model_key=$(func_parser_key "${lines[43]}")
infer_model=$(func_parser_value "${lines[43]}")
image_dir_key=$(func_parser_key "${lines[44]}")
infer_img_dir=$(func_parser_value "${lines[44]}")
save_log_key=$(func_parser_key "${lines[45]}")
benchmark_key=$(func_parser_key "${lines[46]}")
benchmark_value=$(func_parser_value "${lines[46]}")
infer_key2=$(func_parser_key "${lines[47]}")
infer_value2=$(func_parser_value "${lines[47]}")

LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
L
LDOUBLEV 已提交
159
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
L
LDOUBLEV 已提交
160
            for use_mkldnn in ${use_mkldnn_list[*]}; do
L
LDOUBLEV 已提交
161 162 163
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
L
LDOUBLEV 已提交
164 165 166 167 168
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
169 170 171 172
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
173 174 175 176 177
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
L
LDOUBLEV 已提交
178
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
L
LDOUBLEV 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                        continue
                    fi
                    if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
194 195 196 197 198
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
199 200 201 202 203
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
L
LDOUBLEV 已提交
204 205
        else
            echo "Currently does not support hardware other than CPU and GPU"
L
LDOUBLEV 已提交
206 207 208 209 210 211 212
        fi
    done
}

if [ ${MODE} != "infer" ]; then

IFS="|"
L
LDOUBLEV 已提交
213 214
export Count=0
USE_GPU_KEY=(${train_use_gpu_value})
L
LDOUBLEV 已提交
215
for gpu in ${gpu_list[*]}; do
L
LDOUBLEV 已提交
216 217
    use_gpu=${USE_GPU_KEY[Count]}
    Count=$(($Count + 1))
L
LDOUBLEV 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    if [ ${gpu} = "-1" ];then
        env=""
    elif [ ${#gpu} -le 1 ];then
        env="export CUDA_VISIBLE_DEVICES=${gpu}"
        eval ${env}
    elif [ ${#gpu} -le 15 ];then
        IFS=","
        array=(${gpu})
        env="export CUDA_VISIBLE_DEVICES=${array[0]}"
        IFS="|"
    else
        IFS=";"
        array=(${gpu})
        ips=${array[0]}
        gpu=${array[1]}
        IFS="|"
        env=" "
    fi
    for autocast in ${autocast_list[*]}; do 
        for trainer in ${trainer_list[*]}; do 
            flag_quant=False
            if [ ${trainer} = ${pact_key} ]; then
                run_train=${pact_trainer}
                run_export=${pact_export}
                flag_quant=True
            elif [ ${trainer} = "${fpgm_key}" ]; then
                run_train=${fpgm_trainer}
                run_export=${fpgm_export}
            elif [ ${trainer} = "${distill_key}" ]; then
                run_train=${distill_trainer}
                run_export=${distill_export}
            elif [ ${trainer} = ${trainer_key1} ]; then
                run_train=${trainer_value1}
                run_export=${export_value1}
            elif [[ ${trainer} = ${trainer_key2} ]]; then
                run_train=${trainer_value2}
                run_export=${export_value2}
            else
                run_train=${norm_trainer}
                run_export=${norm_export}
            fi

            if [ ${run_train} = "null" ]; then
                continue
            fi
            
            set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
L
LDOUBLEV 已提交
265
            set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
L
LDOUBLEV 已提交
266 267 268
            set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
            set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
            set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
L
LDOUBLEV 已提交
269
            set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
L
LDOUBLEV 已提交
270
            save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
L
LDOUBLEV 已提交
271 272

            set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
L
LDOUBLEV 已提交
273
            if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
L
LDOUBLEV 已提交
274
                cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
L
LDOUBLEV 已提交
275
            elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
L
LDOUBLEV 已提交
276
                cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
L
LDOUBLEV 已提交
277
            else     # train with multi-machine
L
LDOUBLEV 已提交
278
                cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
L
LDOUBLEV 已提交
279 280
            fi
            # run train
281
            eval "unset CUDA_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
282 283 284
            eval $cmd
            status_check $? "${cmd}" "${status_log}"

L
LDOUBLEV 已提交
285
            set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
L
LDOUBLEV 已提交
286 287
            # run eval 
            if [ ${eval_py} != "null" ]; then
L
LDOUBLEV 已提交
288
                eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu}" 
L
LDOUBLEV 已提交
289 290 291 292 293 294 295
                eval $eval_cmd
                status_check $? "${eval_cmd}" "${status_log}"
            fi

            if [ ${run_export} != "null" ]; then 
                # run export model
                save_infer_path="${save_log}"
L
LDOUBLEV 已提交
296
                export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}"
L
LDOUBLEV 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                eval $export_cmd
                status_check $? "${export_cmd}" "${status_log}"

                #run inference
                eval $env
                save_infer_path="${save_log}"
                func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                eval "unset CUDA_VISIBLE_DEVICES"
            fi
        done
    done
done

else
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    echo $env
    #run inference
    func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False"
fi