test.sh 11.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
autocast_list=$(func_parser_value "${lines[4]}")
autocast_key=$(func_parser_key "${lines[4]}")
epoch_key=$(func_parser_key "${lines[5]}")
epoch_num=$(func_parser_value "${lines[5]}")
save_model_key=$(func_parser_key "${lines[6]}")
train_batch_key=$(func_parser_key "${lines[7]}")
train_batch_value=$(func_parser_value "${lines[7]}")
train_use_gpu_key=$(func_parser_key "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key1=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

inference_py=$(func_parser_value "${lines[36]}")
use_gpu_key=$(func_parser_key "${lines[37]}")
use_gpu_list=$(func_parser_value "${lines[37]}")
use_mkldnn_key=$(func_parser_key "${lines[38]}")
use_mkldnn_list=$(func_parser_value "${lines[38]}")
cpu_threads_key=$(func_parser_key "${lines[39]}")
cpu_threads_list=$(func_parser_value "${lines[39]}")
batch_size_key=$(func_parser_key "${lines[40]}")
batch_size_list=$(func_parser_value "${lines[40]}")
use_trt_key=$(func_parser_key "${lines[41]}")
use_trt_list=$(func_parser_value "${lines[41]}")
precision_key=$(func_parser_key "${lines[42]}")
precision_list=$(func_parser_value "${lines[42]}")
infer_model_key=$(func_parser_key "${lines[43]}")
infer_model=$(func_parser_value "${lines[43]}")
image_dir_key=$(func_parser_key "${lines[44]}")
infer_img_dir=$(func_parser_value "${lines[44]}")
save_log_key=$(func_parser_key "${lines[45]}")
benchmark_key=$(func_parser_key "${lines[46]}")
benchmark_value=$(func_parser_value "${lines[46]}")
infer_key2=$(func_parser_key "${lines[47]}")
infer_value2=$(func_parser_value "${lines[47]}")

LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] && [ ${_flag_quant} = "True" ]; then
            continue
        fi
        if [ ${use_gpu} = "False" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        #${image_dir_key}=${_img_dir}  ${save_log_key}=${_save_log_path} --benchmark=True
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
        else
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                        continue
                    fi
                    if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
        fi
    done
}

if [ ${MODE} != "infer" ]; then

IFS="|"
for gpu in ${gpu_list[*]}; do
    use_gpu=True
    if [ ${gpu} = "-1" ];then
        use_gpu=False
        env=""
    elif [ ${#gpu} -le 1 ];then
        env="export CUDA_VISIBLE_DEVICES=${gpu}"
        eval ${env}
    elif [ ${#gpu} -le 15 ];then
        IFS=","
        array=(${gpu})
        env="export CUDA_VISIBLE_DEVICES=${array[0]}"
        IFS="|"
    else
        IFS=";"
        array=(${gpu})
        ips=${array[0]}
        gpu=${array[1]}
        IFS="|"
        env=" "
    fi
    for autocast in ${autocast_list[*]}; do 
        for trainer in ${trainer_list[*]}; do 
            flag_quant=False
            if [ ${trainer} = ${pact_key} ]; then
                run_train=${pact_trainer}
                run_export=${pact_export}
                flag_quant=True
            elif [ ${trainer} = "${fpgm_key}" ]; then
                run_train=${fpgm_trainer}
                run_export=${fpgm_export}
            elif [ ${trainer} = "${distill_key}" ]; then
                run_train=${distill_trainer}
                run_export=${distill_export}
            elif [ ${trainer} = ${trainer_key1} ]; then
                run_train=${trainer_value1}
                run_export=${export_value1}
            elif [[ ${trainer} = ${trainer_key2} ]]; then
                run_train=${trainer_value2}
                run_export=${export_value2}
            else
                run_train=${norm_trainer}
                run_export=${norm_export}
            fi

            if [ ${run_train} = "null" ]; then
                continue
            fi
            
            set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
            set_autocast=$(func_set_params "${epoch_key}" "${epoch_num}")
            set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
            set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
            set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")

            save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
            if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu}  ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
            elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log}  ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
            else     # train with multi-machine
                cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
            fi
            # run train
            eval $cmd
            status_check $? "${cmd}" "${status_log}"

            # run eval 
            if [ ${eval_py} != "null" ]; then
                eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name}" 
                eval $eval_cmd
                status_check $? "${eval_cmd}" "${status_log}"
            fi

            if [ ${run_export} != "null" ]; then 
                # run export model
                save_infer_path="${save_log}"
                export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}"
                eval $export_cmd
                status_check $? "${export_cmd}" "${status_log}"

                #run inference
                eval $env
                save_infer_path="${save_log}"
                func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                eval "unset CUDA_VISIBLE_DEVICES"
            fi
        done
    done
done

else
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    echo $env
    #run inference
    func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False"
fi