predict_rec.py 13.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
19

L
LDOUBLEV 已提交
20
import tools.infer.utility as utility
L
LDOUBLEV 已提交
21 22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
L
LDOUBLEV 已提交
23
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
24 25 26 27 28
import cv2
import copy
import numpy as np
import math
import time
T
tink2123 已提交
29
import paddle.fluid as fluid
L
LDOUBLEV 已提交
30 31 32 33 34 35 36
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
37
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
38
        self.character_type = args.rec_char_type
39
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
40
        self.rec_algorithm = args.rec_algorithm
T
tink2123 已提交
41
        self.text_len = args.max_text_length
T
tink2123 已提交
42 43
        char_ops_params = {
            "character_type": args.rec_char_type,
44
            "character_dict_path": args.rec_char_dict_path,
T
tink2123 已提交
45 46
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
T
tink2123 已提交
47
        }
T
tink2123 已提交
48
        if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]:
T
tink2123 已提交
49
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
50
            self.loss_type = 'ctc'
T
tink2123 已提交
51
        elif self.rec_algorithm == "RARE":
T
tink2123 已提交
52
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
53
            self.loss_type = 'attention'
T
tink2123 已提交
54 55 56
        elif self.rec_algorithm == "SRN":
            char_ops_params['loss_type'] = 'srn'
            self.loss_type = 'srn'
L
LDOUBLEV 已提交
57 58
        self.char_ops = CharacterOps(char_ops_params)

59
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
60
        imgC, imgH, imgW = self.rec_image_shape
61
        assert imgC == img.shape[2]
62
        if self.character_type == "ch":
T
tink2123 已提交
63
            imgW = int((32 * max_wh_ratio))
64
        h, w = img.shape[:2]
65 66 67 68 69
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
70
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
71 72 73 74 75 76 77 78
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length,
                         char_num):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self,
                          img,
                          image_shape,
                          num_heads,
                          max_text_length,
                          char_ops=None):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]
        char_num = char_ops.get_char_num()

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
156 157
    def __call__(self, img_list):
        img_num = len(img_list)
158
        # Calculate the aspect ratio of all text bars
159 160 161
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
162
        # Sorting can speed up the recognition process
163 164
        indices = np.argsort(np.array(width_list))

T
tink2123 已提交
165
        #rec_res = []
166
        rec_res = [['', 0.0]] * img_num
167
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
168 169 170 171
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
172
            max_wh_ratio = 0
L
LDOUBLEV 已提交
173
            for ino in range(beg_img_no, end_img_no):
174 175
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
176 177 178
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                if self.loss_type != "srn":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.process_image_srn(img_list[indices[ino]],
                                                      self.rec_image_shape, 8,
                                                      25, self.char_ops)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])

            norm_img_batch = np.concatenate(norm_img_batch, axis=0)
T
tink2123 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            norm_img_batch = norm_img_batch.copy()

            if self.loss_type == "srn":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)
                starttime = time.time()

                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                encoder_word_pos_list = fluid.core.PaddleTensor(
                    encoder_word_pos_list)
                gsrm_word_pos_list = fluid.core.PaddleTensor(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch, encoder_word_pos_list,
                    gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list,
                    gsrm_word_pos_list
                ]

                self.predictor.run(inputs)
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.zero_copy_run()
T
tink2123 已提交
229

T
tink2123 已提交
230
            if self.loss_type == "ctc":
T
tink2123 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
L
fix bug  
LDOUBLEV 已提交
248
                    if len(valid_ind) == 0:
249
                        continue
L
LDOUBLEV 已提交
250
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
251 252
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
            elif self.loss_type == 'srn':
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                probs = self.output_tensors[1].copy_to_cpu()
                char_num = self.char_ops.get_char_num()
                preds = rec_idx_batch.reshape(-1)
                elapse = time.time() - starttime
                predict_time += elapse
                total_preds = preds.copy()
                for ino in range(int(len(rec_idx_batch) / self.text_len)):
                    preds = total_preds[ino * self.text_len:(ino + 1) *
                                        self.text_len]
                    ind = np.argmax(probs, axis=1)
                    valid_ind = np.where(preds != int(char_num - 1))[0]
                    if len(valid_ind) == 0:
                        continue
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    preds = preds[:valid_ind[-1] + 1]
                    preds_text = self.char_ops.decode(preds)

                    rec_res[indices[beg_img_no + ino]] = [preds_text, score]
T
tink2123 已提交
273 274 275
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
276 277
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
278 279 280 281 282 283 284 285 286
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
287 288
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
289

L
LDOUBLEV 已提交
290 291 292
        return rec_res, predict_time


293
def main(args):
D
dyning 已提交
294
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
295 296 297 298
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
L
LDOUBLEV 已提交
299 300 301
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
302 303 304 305 306
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
307

T
tink2123 已提交
308 309
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
310 311
    except Exception as e:
        print(e)
T
tink2123 已提交
312
        logger.info(
T
tink2123 已提交
313 314 315 316
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
317
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
318
        exit()
L
LDOUBLEV 已提交
319 320 321 322
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
323 324 325 326


if __name__ == "__main__":
    main(utility.parse_args())